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INTRODUCTION

1. Rationale

Parabolic equations backward in time with the integer and fractional or-

ders are used to describe many important physical phenomena. For example,

geophysical and geological processes, materials science, hydrodynamics, im-

age processing, describe transport by fluid flow in a porous environment.

In addition, the class of semilinear parabolic equations, ut + A(t)u(t) =

f(t, u(t)), also used to describe some important physical phenomena. For

example: a) f(t, u) = u
(
b− c‖u‖2

)
, c > 0 in neurophysiological modeling of

large nerve cell systems with action potential; b) f(t, u) = −σu/(1+au+bu2),

σ, a, b > 0, in enzyme kinetics; c) f(t, u) = −|u|pu, p > 1 or f(t, u) = −up

in heat transfer processes; d) f(t, u) = au − bu3 as the AllenCahn equation

describing the process of phase separation in multicomponent alloy systems or

the GinzburgLandau equation in superconductivity; e) f(t, u) = σu(u−θ)(1−
u)(0 < θ < 1) in population genetics. Besides, the Bürgers type equations

backward in time is also frequently encountered in the applications of data

assimilation, nonlinear wave process, in the theory of nonlinear acoustics or

explosive theory and in the optimal control.

The problems mentioned above are often ill-posed problems in the sense

of Hadamard. For inverse and ill-posed problems, if the final data of the

problem is replaced small swaps, then it will lead to a problem that has no

solution or its solution is far from the exact solution.

Therefore, giving stability estimates, regularization method, as well as

effective numerical methods for finding approximate solutions for ill-posed

problems, are always topical issues. For the above reasons, we choose research

topics for our thesis was:”On stability estimates and regularization of
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backward integer and fractional order parabolic equations”.

2. Research purposes

Our goal is to establish new results about stability estimates and regular-

ization for backward integer and fractional order parabolic equations.

3. Research subjects

For the parabolic equations of the integer order, we focus on research

Bürgers type equations backward in time, semilinear parabolic equations

backward in time. For the parabolic equations of the fractional order, we

focus on research linear equations.

4. Research scopes

We study stability estimates and regularization for parabolic equations

backward in time of the integer and fractional order.

5. Research Methods

We use the well-known methods such as logarithmically convex method,

non-local boundary value problem method, Tikhonov regularization method

and mollification method.

6. Scientific and practical meaning

The thesis has achieved some new results on stability estimates and reg-

ularization for nonlinear parabolic equations backward in time of the integer

order and linear parabolic equations backward in time of the fractional order.

Therefore, the thesis contributes to enriching the research results in the field

of inverse and ill-posed problems.

The thesis can serve as a reference for students, graduated students and

other interested persons in mathematics.

7. Overview and structure of the thesis
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7.1. Overview of some issues related to the thesis

Inverse and ill-posed problems appeared from the 50s of the last cen-

tury. The first mathematicians addressed this problem are Tikhonov A.

N., Lavrent’ev M. M., John J., Pucci C., Ivanov V. K. Especially, in 1963,

Tikhonov A. N. gave a regularization method under his name for inverse and

ill-posed problems. Since then, inverse and ill-posed problems have become

a separate discipline of physics and computational science.

Consider semilinear parabolic equations backward in time{
ut + Au = f(t, u), 0 < t ≤ T,
‖u(T )− ϕ‖ ≤ ε

(1)

with noise level ε.

Note that, there were many results of stability estimates and regulariza-

tion for the problem in case f = 0. For linear problems, some methods can

be included to be the quasi-reversibility method, Sobolev equation method,

regularization Tikhonov method, nonlocal boundary value problem method,

mollification method. However, for nonlinear problems, there are still many

issues that need to be studied. For example, looking for stability estimates

and regularization for equations with time-dependent coefficients are still

open.

In 1994, Nguyen Thanh Long and Alain Pham Ngoc Dinh examined the

ill-posed problem for parabolic equations of semilinear form (1). By using

the theory of contraction semigroups and the strongly continuous generator

is defined by the operator

Aβ = −A(I + βA)−1, β > 0,

they achieved an error of the logarithm type in (0, 1] between the solution of

the original problem and the solution of the regularized problem.

In 2009, Dang Duc Trong et al considered problem (1) in one-dimensional

space ut − uxx = f(x, t, u(x, t)), (x, t) ∈ (0, π)× (0, T ),
u(0, t) = u(π, t) = 0, t ∈ (0, T ),
‖u(x, T )− ϕ‖ ≤ ε,

(2)
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where f satisfies the global Lipschitz condition. These authors have use

the integral equation method to regularize equation (2). Specifically, they

regularized problem (2) by following problem

uε(x, t) =
∞∑
n=1

(εn2 + e−Tn
2

)
t−T
T

(
ϕn −

∫ T

t
e(s−T )n

2

fn(u
ε)ds

)
sinnx. (3)

with condition

∞∑
n=1

n4e2Tn
2| 〈u(t), φn〉 |2 <∞, ∀t ∈ [0, T ], (4)

where φn = sin(nx). These authors achieved an error of Hölder type that is

as follows

‖u(t)− uε(t)‖ ≤Mek
2T (T−t)ε

t
T

(
T

1 + ln T
ε

)1−t/T

.

In 2010, Phan Thanh Nam regularized for problem (1) by the spectral

method. Author considered A as a positive self-adjoint unbounded linear

operator and H is an orthonormal eigenbasis {φi}i>1 corresponding to the

eigenvalues {λi}i>1 such that

0 < λ1 6 λ2 6 . . . , and lim
i→+∞

λi = +∞ (5)

and f satisfies the global Lipschitz condition. Phan Thanh Nam proved the

following problem is well-poosed{
vt + Av = PMf(t, v(t)), 0 < t < T,
v(T ) = PMg

(6)

where

PMw =
∑
λn≤M

〈φn, w〉φn

and achieved the following results:

If
∞∑
n=1

e2λnmin(t,β)|(u(t), φn)|2 6 E2
0 then with β ≥ T , we have

‖v(t)− u(t)‖ ≤ cεt/T .

If
∞∑
n=1

λ2β
′

n e2λnmin(t,β)|(u(t), φn)|2 6 E2
1 then with β ≥ T we have

‖v(t)− u(t)‖ ≤ cεt/T max
{

ln(1/ε)−β
′

, ε(τ−T )/τ
}
.
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If
∞∑
n=1

e2λn|(u(t), φn)|2 6 E2
2 then

‖v(t)− u(t)‖ ≤ cεt/T max
{
ε(β−T )/τ , ε(τ−T )/τ

}
.

In 2014, Nguyen Huy Tuan and Dang Duc Trong considered the problem

(1) with A satisfies conditions like Phan Thanh Nam. For v ∈ H, they give

a definition

Aε(v) =
∞∑
k=0

ln+
( 1

ελk + e−λk

)
〈v, φk〉φk

where ln+(x) = max{lnx, 0}. Moreover, they assume that f satisfies the

following conditions

(F0) There exists a constant L0 > 0 such that

〈f(t, w1)− f(t, w2), w1 − w2〉+ L0‖w1 − w2‖2 > 0.

(F1) For r > 0 , there exists a constant K(r) > 0 such that f : R×H → H

there exists a constant locally Lipschitz

‖f(t, w1)− f(t, w2)‖ 6 K(r)‖w1 − w2‖

with w1, w2 ∈ H and ‖wi‖ 6 r, i = 1, 2.

(F2) f(t, 0) = 0 for all t ∈ [0, T ].

Nguyen Huy Tuan and Dang Duc Trong regularized problem (1) by problemdvε(t)dt
+ Aεvε(t) = f(vε(t), t), 0 < t < T,

vε(T ) = ϕ.
(7)

These authors needed conditions

E2 =

∫ T

0

∞∑
k=1

λ2ke
2λk
∣∣〈u(s), φk〉

∣∣2 <∞.
They proved that the convergence rate of the regularized solutions to exactly

solution is the same as εt/T
(

ln e
ε

)t/T−1
.
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In 2015, Dinh Nho Hao and Nguyen Van Duc regularized problem (1) by

non-local boundary value problem{
vt + Av = f(t, v(t)), 0 < t < T,
αv(0) + v(T ) = ϕ, 0 < α < 1.

(8)

Dinh Nho Hao and Nguyen Van Duc considered f that satisfies the global

Lipschitz condition

‖f(t, w1)− f(t, w2)‖ 6 k‖w1 − w2‖ (9)

with Lipschitz constantk ∈ [0, 1/T ) independent on t, w1, w2.

Moreover, with the assumption ‖u(0)‖ 6 E,E > ε, Dinh Nho Hao and

Nguyen Van Duc obtain

‖u(·, t)− v(·, t)‖ 6 Cεt/TE1−t/T , ∀t ∈ [0, T ]. (10)

Dinh Nho Hao and Nguyen Van Duc are the first authors to achieve form

speed Hölder when regularized for problem (1) only on condition ‖u(0)‖ ≤ E.

However, this is true only Lipschitz constant k ∈ [0, 1/T ).

In addition to the semi-linear parabolic equation, Bürgers type equations

backward in time is also of interest to many mathematicians. Abazari R.,

Borhanifar A., Srivastava V. K., Tamsir M., Bhardwaj U., Sanyasiraju Y.,

Zhanlav T., Chuluunbaatar O., Ulziibayar V., Zhu H., Shu H., Ding M. gave

the numerical method for Bürgers equations. Allahverdi N. et al consider

the application of Bürgers equation in optimal controlxt. Lundvall J. et al

consider the application of Bürgers equation in assimilating data. Carasso

A. S., Ponomarev S. M. use logarithmically convex method to give stability

estimates for Bürgers equation.

Different from the parabolic equations backward in time of integer order,

the parabolic equations backward in time of fractional order appear later,

but they are also a very exciting research direction in recent years. Mathe-

maticians have achieved a number of important results in the direction of this

study. For example, Sakamoto K. and Yamamoto M. Have achieved results

of the existence and unique inconsistency of the experiment, and their asso-

ciates have achieved a stable evaluation result by the Carleman’s evaluation

method.
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Regularization methods and efficient numerical methods for fractional

parabolic equations backward in time was also proposed by mathematicians

like non-local boundary value problem method, Tikhonov regularization method,

spectral method, quasi-reversibility method, differential methods, finite ele-

ment methods, variational methods, and some other methods.

7.2. Organization of the research

The main content of the thesis is presented in 4 chapters.

Chapter 1, we present the basic knowledge and some complementary

knowledge, which are used in the following chapters.

Chapter 2, we state the obtained new results of stability estimates and

Tikhonov regularization for backward integer order semilinear parabolic equa-

tions.

Chapter 3, we state the obtained new results of stability estimates for

Bürgers-type equations backward in time.

Chapter 4, we state the obtained new regularization for fractional parabolic

equations backward in time by mollification method.

The main results of the thesis were presented at the seminar of the Anal-

ysis Department , Institute of Natural Pedagogy - Vinh University, at the

seminar of the differential equation Departement, Institute of Mathematics,

Vietnam Academy of Science and Technology, and at Scientific workshop

”Optimal and Scientific Calculation 15th” at Ba Vi from 20-22/4/2017. The

results of the thesis were also reported at the 9th Vietnam Mathematical

Congress in Nha Trang 14-18/8/2018.

These results have published in 04 articles, including 01 article on In-

verse Problems (SCI), 01 article on Journal of Inverse and Ill-Posed Problems

(SCIE), 02 article on Acta Mathematica Vietnamica (Scopus).
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CHAPTER 1

BASIC KNOWLEDGE

1.1 Concepts of ill-posed problem, stability estimates

and regularization

This section presents the concepts of ill-posed problem, stability estimates

and regularization.

1.2 Auxiliary results

This section, outlines some of the knowledge needed for the following

chapters.

Definition 1.2.3. The Gamma function Γ is defined by

Γ(z) =

∫ ∞
0

e−ttz−1dt (1.1)

whit z belongs to the right half plane Rez > 0 of the complex plane.

Definition 1.2.5. The function Eα,β(z) is given by

Eα,β(z) :=
∞∑
k=0

zk

Γ(αk + β)
, z ∈ C,

where α > 0, β > 0 and Γ is Gamma function is called Mittag-Leffler function.

Definition 1.2.7. Cho f is differentiable continuous function on [0, T ] (T >

0). Caputo fractional derivative with γ ∈ (0, 1) of function f on (0, T ] is

given by

dγ

dtγ
f(t) =

1

Γ(1− γ)

∫ t

0
(t− s)−γ d

ds
f(s)ds, 0 < t 6 T.

Definition 1.2.11. The function Dν(x) =
n∏
j=1

sin(νxj)

xj
(ν > 0) is called

Dirichlet kernel.
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CHAPTER 2

STABILITY ESTIMATES FOR SEMILINEAR PARABOLIC
EQUATIONS BACKWARD IN TIME

In this chapter, we give stability estimates for semilinear parabolic equa-

tions backward in time. Then, we use the Tikhonov method to regularize

this equation. Our results in this chapter are the first results on stability

estimates, regularization for semilinear parabolic equations backward in time

(Lipschitz constant nonnegative arbitrary) under only with a condition of the

bounded solution at t = 0. These results were published in

- Duc N. V. , Thang N. V. (2017), Stability results for semi-linear parabolic

equations backward in time, Acta Mathematica Vietnamica 42, 99-111.

- Ho D. N., Duc N. V. and Thang N. V. (2018), Backward semi-linear

parabolic equations with time-dependent coefficients and locally Lipschitz

source, J. Inverse Problems 34, 055010, 33 pp.

2.1 Stability estimates for semilinear parabolic equa-

tions backward in time with time-dependent coef-

ficients

Let H be a Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖.
We suppose that the operator A(t) satisfies the following conditions:

(A1) A(t) is a positive self-adjoint unbounded operator on H for each t ∈
[0, T ].

(A2) If u1(t), u2(t) are two solutions of the equation

Lu =
du

dt
+ A(t)u = f(t, u), 0 < t ≤ T, (2.1)
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then there exist a continuous function a1(t) on [0, T ] with c 6 a1(t) 6

c1,∀t ∈ [0, T ], and a constant c2 such that w = u1 − u2 satisfies the

inequality

− d
dt
〈A(t)w,w〉 > −2 〈A(t)w,wt〉 − a1(t) 〈A(t)w,w〉 − c2‖w‖2.

With t ∈ [0, T ], set

a2(t) = exp

(∫ t

0
a1(τ)dτ

)
, a3(t) =

∫ t

0
a2(ξ)dξ

and

ν(t) =
a3(t)

a3(T )
. (2.2)

First, stability estimates with the bound solution in [0, T ]. Suppose f

satisfies the condition (F1) as follows.

(F1) For each r > 0 , there exists a constant K(r) > 0 such that f : [0, T ]×
H → H satisfies the local Lipschitz condition

‖f(t, w1)− f(t, w2)‖ 6 K(r)‖w1 − w2‖

for every w1, w2 ∈ H such that ‖wi‖ 6 r, i = 1, 2.

Theorem 2.1.2. Suppose that the operator A(t) satisfies the conditions

(A1),(A2) and the function f satisfies the condition (F1). Let u1 and u2

be two solutions of the problem (2.1) satisfying ‖ui(T ) − ϕ‖ 6 ε and the

constraint

‖ui(t)‖ 6 E, t ∈ [0, T ], i = 1, 2, 0 < ε < E. (2.3)

Then for t ∈ [0, T ] we have

‖u1(t)− u2(t)‖ 6 2εν(t)E1−ν(t) exp
(
c3ν(t)(1− ν(t))

)
, (2.4)

where

c3 =

(
1

2
K2T + |c2|T + 2K

)
c4c5

with c4 = a3(T )
T , c5 = max{exp |c1|T, exp |c|T} and K = K(E), the Lipschitz

constant in (F1).
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The stability estimate in Theorem 2.1.2 provides no information at t = 0.

For getting it, we require more conditions on A(t) and stronger bounds for

solutions. We have the following results.

Theorem 2.1.7. Let A be a positive self-adjoint unbounded operator admit-

ting an orthonormal eigenbasis {φi}i>1 in H associated with the eigenvalues

{λi}i>1 such that 0 < λ1 < λ2 < . . . and lim
i→+∞

λi = +∞. Let a(t) be a con-

tinuously differentiable function in [0, T ] such that 0 < a0 6 a(t) 6 a1 and

M = max
t∈[0,T ]

|at(t)| < +∞. Suppose that f satisfies the condition (F1), u1 and

u2 are two solutions of the problem ut + a(t)Au = f(t, u(t)), 0 < t 6 T such

that ‖ui(T )− ϕ‖ 6 ε, i = 1, 2. Then the following stability estimates hold:

i) If
∞∑
n=1

λ2βn 〈ui(t), φn〉
2 6 E

2
, t ∈ [0, T ], i = 1, 2, (2.5)

with E > ε and β > 0 then

‖u1(t)− u2(t)‖ ≤ C1(t)ε
ν(t)E

1−ν(t)
((

ln
E

ε

)−β
+

√
ε

E

)1−ν(t)

, t ∈ [0, T ],

where ν(t) =

∫ t
0 a(ξ)dξ∫ T
0 a(ξ)dξ

and C1(t) is a bounded function in [0, T ].

ii) If
∞∑
n=1

e2γλn 〈ui(t), φn〉2 6 Ẽ2, t ∈ [0, T ], i = 1, 2 (2.6)

with Ẽ > ε and γ > 0 then

‖u1(t)− u2(t)‖ 6 C2(t)ε
ν1(t)Ẽ1−ν1(t), t ∈ [0, T ],

where ν1(t) =
γ +

∫ t
0 a(ξ)dξ

γ +
∫ T
0 a(ξ)dξ

and C2(t) is a bounded function in [0, T ].

In Theorem 2.1.7, we require the bound solution in [0, T ]. It is better to

change them by those at t = 0. For this purpose, we assume:

(F2) f(t, 0) = 0 with forall t ∈ [0, T ].

(F3) There exists a constant L1 > 0 such that

〈f(t, w1)− f(t, w2), w1 − w2〉 6 L1‖w1 − w2‖2.
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Theorem 2.1.11. Suppose that the operator A(t) satisfies the conditions

(A1),(A2) and f satisfies the conditions (F1)–(F3). Let u1 and u2 be two

solutions of the problem (2.1) satisfying the constraints ‖ui(T )− ϕ‖ 6 ε and

‖ui(0)‖ 6 E, i = 1, 2,

with 0 < ε < E, then

‖u1(t)− u2(t)‖ 6 2 exp
((1

2
K2T + |c2|T + 2K

)
c4c5ν(t)(1− ν(t))

)
× εν(t)E1−ν(t),∀t ∈ [0, T ]

where c4 = a3(T )
T , c5 = max{exp |c1|T, exp |c|T} v K = K(eL1TE) the Lipschitz

constant in (F1).

In the previous sections, we do not assume any relationship between the

operator A(t) and the function f . To enlarge the class of source functions f

and to obtain stronger results, instead of (F1) we now assume:

(F4) For each r > 0 and any solutions u1 and u2 of the problem (2.1) with

〈A(t)ui, ui〉 6 r2, i = 1, 2 t ∈ [0, T ], there exists a constant K(r) > 0

such that f : R×H → H satisfies the condition

‖f(t, u1)− f(t, u2)‖ 6 K(r)‖u1 − u2‖.

(F5) There exists a constant L2 > 0 such that, for any solution u of the

problem (2.1),

〈A(t)u, f(t, u)〉 6 L2 〈A(t)u, u〉 .

We have the following results

Theorem 2.1.14. Suppose that the conditions (A1),(A2), (F2)–(F5) are

satisfied and there exists a constant L3 > 0 such that

〈A(0)u(0), u(0)〉 > L3‖u(0)‖2.

If u1 and u2 are two solutions of the problem (2.1) satisfying the con-

straints ‖ui(T )− ϕ‖ 6 ε and

〈A(0)ui(0), ui(0)〉 6 E2
1 , i = 1, 2 (2.7)
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with 0 < ε < E1, then for t ∈ [0, T ] there exists a bounded function C̃(t) such

that

‖u1(t)− u2(t)‖ 6 C̃(t)εν(t)E
1−ν(t)
1 . (2.8)

Theorem 2.1.15. Let operator A and function a(t) satisfied conditions as

in Theorem 2.1.7. Suppose that f satisfies the condition (F2)–(F5), u1 and

u2 are two solutions of the problem ut + a(t)Au = f(t, u(t)), 0 < t 6 T such

that ‖ui(T )− ϕ‖ 6 ε, i = 1, 2. Then the following stability estimates hold:

i) If
∞∑
n=1

λ2βn 〈ui(0), φn〉2 6 E
2
, i = 1, 2 (2.9)

with E > ε and β >
1

2
, then there exists a bounded function C(t) in [0, T ]

such that

‖u1(t)− u2(t)‖ 6 C(t)εν(t)E
1−ν(t)

(ln
E

ε

)−β
+

√
ε

E

1−ν(t)

, (2.10)

where ν(t) =

∫ t
0 a(ξ)dξ∫ T
0 a(ξ)dξ

.

ii) If
∞∑
n=1

e2γλn 〈ui(0), φn〉2 6 Ẽ2, i = 1, 2 (2.11)

with Ẽ > ε and γ > 0, then there exists a bounded defined function C1(t) in

[0, T ] such that

‖u1(t)− u2(t)‖ 6 C1(t)ε
ν1(t)Ẽ1−ν1(t), (2.12)

where ν1(t) =
γ +

∫ t
0 a(ξ)dξ

γ +
∫ T
0 a(ξ)dξ

.

2.2 Examples

In this section, we present some examples to illustrate assumptions we

set in section 2.1. These examples also indicate that the theorem of stability
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estimates in section 2.1 is an application for some important physics prob-

lems such as in neurophysiological modeling of large nerve cell systems with

action potential, in heat transfer processes, in population genetics, Ginzburg-

Landau problem, in enzyme kinetics.

2.3 Stability estimates for semilinear parabolic equa-

tions backward in time with time-independent co-

efficients

In section 1.1, we have given stability estimates for semilinear parabolic

equations backward in time with time-dependent coefficients and source func-

tion locally Lipschitz. These results lead to stability estimates for semilin-

ear parabolic equations backward in time with time-dependent coefficients

and source function global Lipschitz. However, in Theorem 2.1.2 and Theo-

rem 2.1.7, in order to give stability estimates then we need condition of the

bounded solution on domain [0, T ]. In Theorem 2.1.11, Theorem 2.1.14 and

Theorem 2.1.15, in order to give stability estimates only with the condition

of the bounded solution at t = 0 then we need condition f satisfied (F2), i.e.

f(t, 0) = 0. Therefore, the purpose of this section is to give stability estimates

for semilinear parabolic equations backward in time with time-independent

coefficients and source function satisfied condition Lipschitz

‖f(t, w1)− f(t, w2)‖ ≤ k‖w1 − w2‖, w1, w2 ∈ H, (2.13)

for some non-negative constant k independent of t, w1 and w2, only with

condition of bounded solution at t = 0.

Let A be a positive self-adjoint unbounded linear operator on domain

D(A) ⊂ H. Consider semilinear parabolic equations backward in time{
ut + Au = f(t, u), 0 < t ≤ T,
‖u(T )− ϕ‖ ≤ ε

(2.14)

where ϕ is the final data of the problem determined by measurement of noise

level ε and solutiion u ∈ C1((0, T ), H) ∩ C([0, T ], H).

Now, we present the results of stability estimates.

Theorem 2.3.1. Suppose u1 and u2 be two solutions of the problem (2.14)
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and f satisfies the condition (2.13). If ui(0) ∈ D(A), i = 1, 2, and

‖ui(0)‖ ≤ E, i = 1, 2, (2.15)

with E > ε, then with t ∈ [0, T ] have

‖u1(t)− u2(t)‖ ≤ 2εt/TE1−t/T exp

[(
2k +

1

4
k2(T + t)

)
t(T − t)

T

]
. (2.16)

Theorem 2.3.3. Assume that A admits an orthonormal eigenbasis {φi}i>1

in H associated with the eigenvalues {λi}i>1 such that 0 < λ1 < λ2 < . . .

and lim
i→+∞

λi = +∞. Suppose that f satisfies the Lipschitz condition (2.13),

u1 and u2 are solutions of the problem (2.14) with ui(0) ∈ D(A), i = 1, 2.

i) If
∞∑
n=1

λ2βn 〈ui(0), φn〉2 6 E2
1 , i = 1, 2, β > 0 (2.17)

with E1 > ε then with forall t ∈ [0, T ], there exists a bounded defined function

C(t) such that

‖u1(t)− u2(t)‖ ≤ C(t)εt/TE
1−t/T
1

((
ln
E1

ε

)−β
+

√
ε

E1

)1−t/T

. (2.18)

ii) If
∞∑
n=1

e2γλn 〈ui(0), φn〉2 6 E2
2 , i = 1, 2, γ > 0 (2.19)

with E2 > ε then with forall t ∈ [0, T ], there exists a bounded defined function

C1(t) such that

‖u1(t)− u2(t)‖ ≤ C1(t)ε
γ+t
γ+TE

1− γ+t
γ+T

2 . (2.20)

2.4 Regularization for semilinear parabolic equations

backward in time by method Tikhonov

In this section, besides the assumptions (A1),(A2), we assume that A(t)

is a positive self-adjoint unbounded operator for each t ∈ [0, T ] and −A(t) is

a generator of a contraction semigroup and that (A(t)+I))−1 is strongly con-

tinuously differentiable. Furthermore, −A(t) is generator a unique evolution
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system U(t, s), 0 6 s 6 t 6 T which is a family of bounded linear operators

from H into itself defined for 0 6 s 6 t 6 T and strongly continuous in the

two variables jointly.

We stabilize the backward problem{
ut + A(t)u = f(t, u), 0 6 t 6 T,
‖u(T )− ϕ‖ 6 ε

(2.21)

by a modified version of Tikhonov regularization.

Denote by v(t) the solution of the initial problem

vt + A(t)v = f(t, v), 0 < t 6 T, v(0) = g ∈ D(A(t)). (2.22)

To emphasize the dependence of the solution v on the initial data g sometime

we write v(t, g) instead of v(t). If the condition ‖u(0)‖ 6 E is satisfied and f

is demi-continuous and maps bounded sets into bounded sets and satisfies the

conditions (F1)–(F3), it is normally processed by minimizing the Tikhonov

functional

Jα(g) = ‖v(T, g)− ϕ‖2 + α‖g‖2 (2.23)

with g ∈ D(A(t)) and α being the regularization parameter. However, as

in many other nonlinear ill-posed problems, it is not clear to us if such a

minimization problem admits a solution. We therefore modify this approach

by solving an approximate minimization problem. Namely, set

I = inf
g∈D(A(t))

Jα(g), (2.24)

and for fixed τ > 0 choose g ∈ D(A(t)) such that

Jα(g) 6 I + τε2. (2.25)

Further, if the condition 〈A(0)u(0), u(0)〉 6 E2
1 is satisfied and f satisfies

the conditions (F2)–(F5), then as above we take the Tikhonov functional

Jβ(g) = ‖v(T, g)− ϕ‖2 + β 〈A(0)g, g〉 , β > 0, (2.26)

where β being the regularization parameter. Set

I1 = inf
g∈D(A(t))

Jβ(g). (2.27)
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With for fixed τ > 0 , choose g̃ ∈ D(A(t)) such that

Jβ(g̃) 6 I1 + τε2, (2.28)

then the problem (2.28) always admits a solution.

Theorem 2.4.2. Suppose that f is demi-continuous and maps bounded

sets into bounded sets and satisfies the conditions (F1)–(F3). If the problem

(2.21) has a solution u(t) with u(0) ∈ D(A(t)) satisfying

‖u(0)‖ 6 E

and v(t, g) is a solution of the problem (2.22) vi g = g, then with α =
( ε
E

)2
there exists a positive constant C such that

‖u(t)− v(t, g)‖ 6 Cεν(t)E1−ν(t), t ∈ [0, T ].

Theorem 2.4.3.Suppose that f is demi-continuous and maps bounded sets

into bounded sets and satisfies the conditions (F2)–(F5) and 〈A(0)u(0), u(0)〉 >
L3‖u(0)‖2 with u(t) being a solution of problem ut +A(t)u = f(t, u), 0 < t 6

T . If the problem (2.21) has a solution u(t) with u(0) ∈ D(A(t)) satisfying

〈A(0)u(0), u(0)〉 6 E2
1 ,

and v(t, g̃) is a solution of the problem (2.22) with g = g̃, then with β =(
ε

E1

)2

there exists a positive constant C1 such that

‖u(t)− v(t, g̃)‖ ≤ C1ε
ν(t)E

1−ν(t)
1 , t ∈ [0, T ].

2.5 Conclusions of Chapter

In Chapter 2, we obtained the following main results:

- Given stability estimates for semilinear parabolic equations backward in

time with time-dependent coefficients and different conditions of source func-

tions and different constraints of the solution. Give examples to illustrate for

hypotheses of operator A(t) and source function locally Lipschitz f .

- Given stability estimates for semilinear parabolic equations backward in

time with time-independent coefficients.

- Regularization for semilinear parabolic equations backward in time with

time-dependent by method Tikhonov.
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CHAPTER 3

STABILITY ESTIMATES FOR BÜRGERS-TYPE EQUATIONS
BACKWARD IN TIME

In this chapter, we give stability estimates for Bürgers-type equations

with type Hölder. These results are generalization and improvement of results

Carasso and Ponomarev. Specifically, we give stability estimates for more

general equations under weaker conditions than those conditions set by the

aforementioned authors. These results were published in

Ho D. N., Duc N. V. and Thang N. V.(2015), Stability estimates for Burgers-

type equations backward in time, J. Inverse and Ill-Posed Problems 23, 41-49.

Let T > 0. Set

D := {(x, t) : 0 < x < 1, 0 < t < T}

and D is closure of D.

In this chapter, for simplicity, we write ‖ · ‖ instead ‖ · ‖L2(0,1).

3.1 Stability estimates for Bürgers-type equations back-

ward in tim with time-dependent coefficients.

In this section, we give stability estimates for Bürgers-type equations

backward in time with time-dependent coefficients

ut = (a(x, t)ux)x − d(x, t)uux + f(x, t), (x, t) ∈ D, (3.1)

u(0, t) = g0(t), u(1, t) = g1(t), 0 6 t 6 T, (3.2)

where a(x, t), d(x, t), g0(t), g1(t), f(x, t) are smooth functions, a(x, t) > a >

0, (x, t) ∈ D, at(x, t), d(x, t) v dx(x, t) are bounded on D.

Theorem 3.1.1. Suppose u1(x, t) and u2(x, t) be two solutions of the problem
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(3.1),(3.2) satisfies

max
(x,t)∈D

{|ui|, |uix|} 6 E, i = 1, 2. (3.3)

Set

m = max
(x,t)∈D

at(x, t) + 2(dE)2

a(x, t)

and

µ(t) =
t

T
nu m = 0, µ(t) =

emt − 1

emT − 1
nu m 6= 0. (3.4)

If ‖u1(·, T )−u2(·, T )‖ 6 δ, there exists a bounded defined function k1(t) such

that

‖u1(·, t)− u2(·, t)‖ 6 k1(t)δ
µ(t)E1−µ(t), ∀t ∈ [0, T ]. (3.5)

3.2 Stability estimates for Bürgers-type equations back-

ward in tim with time-independent coefficients.

In this section, we give stability estimates for Bürgers-type equations

backward in time with time-independent coefficients.

Theorem 3.2.1. Let u1(x, t) and u2(x, t) be smooth solutions of

ut = νuxx − αuux + f(x, t), (x, t) ∈ D,

u(0, t) = g0(t), u(1, t) = g1(t), 0 6 t 6 T,

where ν > 0, α ∈ R, and g0, g1, f are smooth functions. If u1, u2 satisfy

max
(x,t)∈D

{|ui|, |uix|, |uit|} 6 E, i = 1, 2 (3.6)

and ‖u1(·, T ) − u2(·, T )‖L2 6 δ, then exists a bounded defined function k2(t)

such that

‖u1(·, t)− u2(·, t)‖ 6 k2(t)δ
t
TE1− t

T , t ∈ [0, T ]. (3.7)
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3.3 Conclusions of Chapter 3

In Chapter 3, we obtained the following main results:

- Stability estimates type Hölder for Burgers-type equations backward in tim

with time-dependent coefficients.

- Stability estimates type Hölder for Burgers-type equations backward in tim

with time-independent coefficients.
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CHAPTER 4

REGULARIZATION FOR FRACTIONAL PARABOLIC
EQUATION BACKWARD IN TIME

We study fractional backward heat equation Rn{
∂γu

∂tγ
= ∆u, x ∈ Rn, t ∈ (0, T )

u(x, T ) = ϕ(x), x ∈ Rn
(4.1)

where 0 < γ < 1, ϕ is unknown exact data and only noisy data ϕε with

‖ϕε(·)− ϕ(·)‖L2(Rn) 6 ε (4.2)

is available.

In this chapter, we study problem (4.1)-(4.2) in the general space Rn and

regularize the problem by the mollification method{
∂γvν

∂tγ
= ∆vν, x ∈ Rn, t ∈ (0, T )

vν(x, T ) = Sν(ϕ
ε(x)), x ∈ Rn,

(4.3)

where ν > 0 and Sν(ϕ
ε(x)) is the convolution of ϕε(x) with Dirichlet kernel.

These results were published in:

Duc N. V., Muoi P. Q., Thang N. V., A molification method backward time-

fractional heat equation, Acta Math. Vietnam. (Accepted)

4.1 Well-posed of regularization problem

In this section, we prove that problem (4.3) is well-posed.

Theorem 4.1.3. With ϕε ∈ L2(Rn), the problem (4.3) has a unique solution

vν ∈ L2(Rn) and there exists a constant C3 such that

‖vν(·, t)‖ ≤ C3(1 + ν2)‖ϕε‖, t ∈ [0, T ].
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4.2 Convergence rates

In this section, It is well-known that the convergence rates of a regular-

ization method are obtained under some smoothness conditions of the exact

solution together with a rule of regularization parameter choice.

Theorem 4.2.3. If u(x, t) is solution of (4.1) satisfies

‖u(·, 0)‖Hs(R) ≤ E (4.4)

then with ν =

(
E

ε

) 1
s+2

, there exists a constant C1 > 0 such that

‖vν(·, t)− u(·, t)‖H l(R) 6 C1ε
s−l
s+2E

l+2
s+2 , 0 ≤ l < s, t ∈ [0, T ]. (4.5)

Theorem 4.2.5. Suppose that 0 < ε < ‖ϕε(·)‖. Choose τ > 1 such that

0 < τε < ‖ϕε‖. Then there exists a number νε > 0 such that

‖vνε(·, T )− ϕε(·)‖ = τε. (4.6)

Further, if the solution u(x, t) of (4.1) satisfies (4.4) then there exists a con-

stant C2 > 0 such that

‖vνε(·, t)− u(·, t)‖H l(R) 6 C2ε
s−l
s+2E

l+2
s+2 , 0 ≤ l < s, t ∈ [0, T ]. (4.7)

4.3 Example numerical

This section is devoted to illustrating the performance of our regulariza-

tion method. These numerical examples are done on computers LENOVO,

Microsoft Windows 10 Home with version MATLAB 2015a.

4.4 Conclusions of Chapter 4

In chapter 4, we obtained the following main results:

- Prove that regularization problem is well-posed.

- Give convergence type Hölder of the regularized solutions to the exact so-

lution.

- Give examples number that illustrates the theory part.
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GENERAL CONCLUSIONS AND RECOMMENDATIONS

General conclusions

The dissertation studies stability estimates and regularization for parabolic

equations of the order integer and order fractional backward in time. Main

results of the thesis are:

1. We state results of stability estimates for semilinear parabolic equa-

tions of the order integer backward in time (with Lipschitz constant k ≥ 0

arbitrary). This is the first result required only bounded solutions at t = 0.

2. We state results of stability estimates and Tikhonov regularization

for semilinear parabolic equations of the order integer with time-dependent

coefficients backward in time and locally Lipschitz source.

3. Generalize and improve the results of Carasso and Ponomarev about

stability estimates for type Bürgers equations.

4. Regularized in both a priori and a posteriori parameter choice rules

for fractional parabolic equations backward in time by mollification method.

After that, we give a numerical example to illustrate our theory.
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Recommendations

In the future, we look forward to continuing to study the following issues:

1. Research about stability estimates and regularization for nonlinear

parabolic equations of the order integer in Banach space.

2. Research about stability estimates and regularization for linear parabolic

equations of the order fractional in Banach space and nonlinear parabolic

equations of the order fractional in Hilbert space.

3. Research about the problem of determining the inverse source for

parabolic equations.
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