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PREFACE

1 Rationale

1.1. Stability of solutions for optimization related problems, including semicontinu-

ity, continuity, Hölder/Lipschitz continuity and differentiability properties of the solu-

tion mappings to equilibrium and related problems is an important topic in optimiza-

tion theory and applications. In recent decades, there have been many works dealing

with stability conditions for optimization-related problems as optimization problems,

vector variational inequality problems, vector quasiequilibrium problems, variational re-

lation problems. In fact, differentiability of the solution mappings is a rather high level

of regularity and is somehow close to the Lipschitz continuous property (due to the

Rademacher theorem). However, to have a certain property of the solution mapping,

usually the problem data needs to possess the same level of the corresponding property,

and this assumption about the data is often not satisfied in practice. In addition, in a

number of practical situations such as mathematical models for competitive economies,

the semicontinuity of the solution mapping is enough for the efficient use of the models.

Hence, the study of the semicontinuity and continuity properties of solution mappings

in the sense of Berge and Hausdorff is among the most interesting and important topic

in the stability of equilibrium problems.

1.2. The Painlevé-Kuratowski convergence plays an important role in the stability of

solution sets when problems are perturbed by sequences constrained set and objective

mapping converging. Since the perturbed problems with sequences of set and mapping

converging are different from such parametric problems with the parameter perturbed

in a space of parameters, the study of Painlevé-Kuratowski convergence of the solution

sets is useful and deserving. Moreover, this topic is closely related to other important

ones, including solution method, approximation theory. Therefore, there are many works

devoted to the Painlevé-Kuratowski convergence of solution sets for problems related to

optimization. Hence, the researching of convergence of solution sets in the sense of the

Painlevé-Kuratowski is an important and interesting topic in optimization theory and

applications.
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1.3. Well-posedness plays an important role in stability analysis and numerical method

in optimization theory and applications. In recent years, there have been many works

dealing with stability conditions for optimization-related problems as optimization prob-

lems, vector variational inequality problems, vector quasiequilibrium problems. Recently,

Khanh et al. (in 2014) introduced two types of Levitin-Polyak well-posedness for weak

bilevel vector equilibrium and optimization problems with equilibrium constraints. Us-

ing the generalized level closedness conditions, the authors studied the Levitin-Polyak

well-posedness for such problems. However, to the best of our knowledge, the Levitin-

Polyak well-posedness and Levitin-Polyak well-posedness in the generalized sense for

bilevel equilibrium problems and traffic network problems with equilibrium constraints

are open problems. Motivated and inspired by the above observations, we have chosen

the topic for the thesis that is: “Cotinuity of solution mappings for equilibrium

problems”

2 Subject of the research

The objective of the thesis is to establish the continuity of solution mappings for

quasiequilibrium problems, stability of solution mappings for bilevel equilibrium prob-

lems, the Levitin-Polyak well-posedness for bilevel equilibrium problems and Painlevé-

Kuratowski convergence of solution sets for quasiequilibrium problems. Moreover, sev-

eral special cases of optimization related problems such as quasivariational inequalities of

the Minty type and the Stampacchia type, variational inequality problems with equilib-

rium constraints, optimization problems with equilibrium constraints and traffic network

problems with equilibrium constraints are also discussed.

3 Objective of the research

Study objects of this thesis are optimization related problems such as quasiequi-

librium problems, quasivariational inequalities of the Minty type and the Stampacchia

type, bilevel equilibrium problems, variational inequality problems with equilibrium con-

straints, optimization problems with equilibrium constraints and traffic network prob-

lems with equilibrium constraints.

4 Scope of the research

The thesis is concerned with study the Levitin-Polyak well-posedness, stability and

Painlevé-Kuratowski convergence of solutions for optimization related problems.
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5 Methodology of the research

We use the theoretical study method of functional analysis, the method of the

variational analysis and optimization theory in process of studying the topic.

6 Contribution of the thesis

The results of thesis contribute more abundant for the researching directions of

Levitin-Polyak well-posedness, stability and Painlevé-Kuratowski convergence in opti-

mization theory.

The thesis can be a reference for under graduated students, master students and

doctoral students in analysis major in general, and the optimization theory and appli-

cations in particular.

7 Overview and Organization of the research

Besides the sections of usual notations, preface, general conclusions and recom-

mendations, list of the author’s articles related to the thesis and references, the thesis is

organized into three chapters.

Chapter 1 presents the parametric strong vector quasiequilibrium problems in Haus-

dorff topological vector spaces. In section 1.3, we introduce parametric gap functions

for these problems, and study the continuity property of these functions. In section 1.4,

we present two key hypotheses related to the gap functions for the considered problems

and also study characterizations of these hypotheses. Afterwards, we prove that these

hypotheses are not only sufficient but also necessary for the Hausdorff lower semiconti-

nuity and Hausdorff continuity of solution mappings to these problems. In section 1.5,

as applications, we derive several results on Hausdorff (lower) continuity properties of

the solution mappings in the special cases of variational inequalities of the Minty type

and the Stampacchia type.

Chapter 2 presents the vector quasiequilibrium problems under perturbation in terms

of suitable asymptotically solving sequences, not embedding given problems into a pa-

rameterized family. In section 2.1, we introduce gap functions for these problems and

study the continuity property of these functions. In section 2.2, by employing some types

of convergences for mapping and set sequences, we obtain the Painlevé-Kuratowski upper

convergence of solution sets for the reference problems. Then, by using nonlinear scalar-

ization functions, we propose gap functions for such problems, and later employing these

functions, we study necessary and sufficient conditions for Painlevé-Kuratowski lower

convergence and Painlevé-Kuratowski convergence. In section 2.3, as an application, we
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discuss the special case of vector quasivariational inequality.

Chapter 3 presents the stability of solutions and Levitin-Polyak well-posedness for

bilevel vector equilibrium problems. In section 3.1, we studty the stability of solutions for

parametric bilevel vector equilibrium problems in Hausdorff topological vector spaces.

Then we study the stability conditions such as (Hausdorff) upper semicontinuity and

(Hausdorff) lower semicontinuity of solutions for such problems. Many examples are pro-

vided to illustrate the essentialness of the imposed assumptions. For the applications, we

obtain the stability results for the parametric vector variational inequality problems with

equilibrium constraints and parametric vector optimization problems with equilibrium

constraints. In section 3.2, we introduce the concepts of Levitin-Polyak well-posedness

and Levitin-Polyak well-posedness in the generalized sense for strong bilevel vector equi-

librium problems. The notions of upper/lower semicontinuity involving variable cones

for vector-valued mappings and their properties are proposed and studied. Using these

generalized semicontinuity notions, we investigate sufficient and/or necessary conditions

of the Levitin-Polyak well-posedness for the reference problems. Some metric character-

izations of these Levitin-Polyak well-posedness concepts in the behavior of approximate

solution sets are also discussed. As an application, we consider the special case of traffic

network problems with equilibrium constraints.
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CHAPTER 1

CONTINUITY OF SOLUTION MAPPINGS FOR

QUASIEQUILIBRIUM PROBLEMS

In this chapter, we present the continuity of solution mappings of parametric strong

vector quasiequilibrium problems. Firstly, we consider parametric quasiequilibrium prob-

lems and recall some preliminary results which are needed in the sequel. Afterward, we

introduce parametric gap functions for these problems, and study the continuity property

of these functions. Next, we present two key hypotheses related to the gap functions for

the considered problems and also study characterizations of these hypotheses. Then, we

prove that these hypotheses are not only sufficient but also necessary for the Hausdorff

lower semicontinuity and Hausdorff continuity of solution mappings to these problems.

Finally, as applications, we derive several results on Hausdorff (lower) continuity proper-

ties of the solution mappings in the special cases of variational inequalities of the Minty

type and the Stampacchia type.

1.1 Preliminaries

Definition 1.1.3. Let X and Y be two topological Hausdorff spaces and F : X ⇒ Y

be a multifunction.

(i) F is said to be upper semicontinuous (usc) at x0 if for each open set U ⊃ F (x0),

there is a neighborhood V of x0 such that U ⊃ F (x), for all x ∈ V .

(ii) F is said to be lower semicontinuous (lsc) at x0 if F (x0)∩U 6= ∅ for some open set

U ⊂ Y implies the existence of a neighborhood V of x0 such that F (x) ∩ U 6= ∅,
for all x ∈ V .

(iii) F is said to be continuous at x0 if it is both lsc and usc at x0.

(iv) F is said to be closed at x0 ∈ domF if for each net {(xα, zα)} ⊂ graphF such that

(xα, zα)→ (x0, z0), it follows that (x0, z0) ∈ graphF .

Definition 1.1.4. Let X and Y be two topological Hausdorff vector spaces and

F : X ⇒ Y be a multifunction.
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(i) F is said to be Hausdorff upper semicontinuous (H-usc) at x0 if for each neigh-

borhood U of the origin in Y , there exists a neighborhood V of x0 such that,

F (x) ⊂ F (x0) + U,∀x ∈ V .

(ii) F is said to be Hausdorff lower semicontinuous (H-lsc) at x0 if for each neigh-

borhood U of the origin in Y , there exists a neighborhood V of x0 such that

F (x0) ⊂ F (x) + U,∀x ∈ V .

(iii) F is said to be H-continuous at x0 if it is both H-lsc and H-usc at x0.

We say that F satisfies a certain property on a subset A ⊂ X if F satisfies it at every

point of A. If A = X, we omit “on X” in the statement.

Lemma 1.1.8. For any fixed e ∈ intC, y ∈ Y and the nonlinear scalarization function

ξe : Y → R defined by ξe(y) := min{r ∈ R : y ∈ re− C}, we have

(i) ξe is a continuous and convex function on Y ;

(ii) ξe(y) ≤ r ⇔ y ∈ re− C;

(iii) ξe(y) > r ⇔ y 6∈ re− C.

1.2 Quasiequilibrium problems

Let X, Y, Z, P be Hausdorff topological vector spaces, A ⊂ X, B ⊂ Y and Γ ⊂ P

be nonempty subsets, and let C be a closed convex cone in Z with intC 6= ∅. Let

K : A × Γ ⇒ A, T : A × Γ ⇒ B be multifunctions and f : A × B × A × Γ → Z be

an equilibrium function, i.e., f(x, t, x, γ) = 0 for all x ∈ A, t ∈ B, γ ∈ Γ. Motivated and

inspired by variational inequalities in the sense of Minty and Stampacchia, we consider

the following two parametric strong vector quasiequilibrium problems.

(QEP1) finding x ∈ K(x, γ) such that

f(x, t, y, γ) ∈ C, ∀y ∈ K(x, γ),∀t ∈ T (y, γ).

(QEP2) finding x ∈ K(x, γ) and t ∈ T (x, γ) such that

f(x, t, y, γ) ∈ C, ∀y ∈ K(x, γ).

For each γ ∈ Γ, we denote the solution sets of (QEP1) and (QEP2) by S1(γ) and

S2(γ), respectively.
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1.3 Gap functions for (QEP1) and (QEP2)

In this section, we introduce the parametric gap functions for (QEP1) and (QEP2).

Definition 1.3.1. A function g : A× Γ→ R is said to be a parametric gap function for

problem (QEP1) ((QEP2), respectively), if:

(a) g(x, γ) ≥ 0, for all x ∈ K(x, γ);

(b) g(x, γ) = 0 if and only if x ∈ S1(γ) (x ∈ S2(γ), respectively.)

Now we suppose thatK and T have compact valued in a neighborhood of the reference

point. We define two functions p : A× Γ→ R and h : A× Γ→ R as follows

p(x, γ) = max
t∈T (y,γ)

max
y∈K(x,γ)

ξe(−f(x, t, y, γ)), (1.1)

and

h(x, γ) = min
t∈T (x,γ)

max
y∈K(x,γ)

ξe(−f(x, t, y, γ)). (1.2)

Since K(x, γ) and T (x, γ) are compact sets for any (x, γ) ∈ A × Γ, ξe and f are

continuous, p and h are well-defined.

Theorem 1.3.2.

(i) The function p(x, γ) defined by (1.1) is a parametric gap function for problem

(QEP1).

(ii) The function h(x, γ) defined by (1.2) is a parametric gap function for problem

(QEP2).

Theorem 1.3.4. Consider (QEP1) and (QEP2), assume that K and T are continuous

with compact values on A× Γ. Then, p and h are continuous on A× Γ.

1.4 Continuity of solution mappings for (QEP1) and (QEP2)

In this section, we establish the Hausdorff lower semicontinuity and Hausdorff continuity

of the solution mappings to (QEP1) and (QEP2).

Theorem 1.4.1. Consider (QEP1) and (QEP2), assume that A is compact, K is con-

tinuous with compact values on A, and L≥C0f is closed. Then,

(i) S1 is both upper semicontinuous and closed with compact values on Γ if T is lower

semicontinuous on A,

(ii) S2 is both upper semicontinuous and closed with compact values on Γ if T is upper

semicontinuous with compact values on A,
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where L≥C0f = {(x, t, y, γ) ∈ X × Z ×X × Γ | f(x, t, y, γ) ∈ C}.

Motivated by the hypotheses (H1) in Zhao (in 1997), we introduce the following key

assumptions.

(Hp(γ0)) : Given γ0 ∈ Γ. For any open neighborhood U of the origin in X, there exist

ρ > 0 and a neighborhood V (γ0) of γ0 such that for all γ ∈ V (γ0) and x ∈ E(γ) \
(S1(γ) + U), one has p(x, γ) ≥ ρ.

(Hh(γ0)) : Given γ0 ∈ Γ. For any open neighborhood U of the origin in X, there exist

ρ > 0 and a neighborhood V (γ0) of γ0 such that for all γ ∈ V (γ0) and x ∈ E(γ) \
(S2(γ) + U), one has h(x, γ) ≥ ρ.

Now, we show that the hypotheses (Hp(γ0)) and (Hh(γ0)) are not only sufficient but

also necessary for the Hausdorff lower semicontinuity and Hausdorff continuity of the

solution mappings to (QEP1) and (QEP2), respectively.

Theorem 1.4.6. Consider (QEP1) and (QEP2), suppose that A is compact, K and T

are continuous with compact values in A× Γ, f is continuous in A×B ×A×Λ. Then,

(i) S1 is Hausdorff lower semicontinuous on Γ if and only if (Hp(γ0)) is satisfied,

(ii) S2 is Hausdorff lower semicontinuous on Γ if and only if (Hh(γ0)) is satisfied..

Theorem 1.4.7. Suppose that all the conditions in Theorem 1.4.6 are satisfied. Then,

(i) S1 is Hausdorff continuous with compact values in Γ if and only if (Hp(γ0)) holds,

(ii) S2 is Hausdorff continuous with compact values in Γ if and only if (Hh(γ0)) holds.

1.5 Application to quasivariational inequality problems

Let X, Y, Z,A,B,C,K, T be as in Sect. 2, L(X;Y ) be the space of all linear continuous

operators from X into Y and g : A×Λ→ A be a vector function. 〈t, x〉 denotes the value
of a linear operator t ∈ L(X;Y ) at x ∈ X. For each γ ∈ Γ, we consider the following

two parametric strong vector quasivariational inequalities of the types of Minty and

Stampacchia (in short, (MQVI) and (SQVI), respectively).

(MQVI) finding x ∈ K(x, γ) such that

〈t, y − g(x, γ)〉 ∈ C, ∀y ∈ K(x, γ),∀t ∈ T (y, γ).

(SQVI) finding x ∈ K(x, γ) and t ∈ T (x, γ) such that

〈t, y − g(x, γ)〉 ∈ C, ∀y ∈ K(x, γ).

By setting

f(x, t, y, γ) = 〈t, y − g(x, γ)〉, (1.3)
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the problems (MQVI) and (SQVI) become special cases of (QEP1) and (QEP2), respec-

tively. For each γ ∈ Γ, we denote the solution sets of the problems (MQVI) and (SQVI)

by Φ(γ) and Ψ(γ), respectively.

The following results are derived from the main results of Section 1.4.

Corollary 1.5.1. Consider (MQVI) and (SQVI), assume that A is compact, K and T

are continuous with compact values in A× Γ, and g is continuous in A× Γ. Then,

(i) Φ is Hausdorff lower semicontinuous on Γ if and only if (Hp(γ0)) holds,

(ii) Ψ is Hausdorff lower semicontinuous on Γ if and only if (Hh(γ0)) holds.

.Corollary 1.5.3. Suppose that all the conditions in Corollary 1.5.1 are satisfied. Then,

(i) Φ is Hausdorff continuous with compact values in Γ if and only if (Hp(γ0)) holds,

(ii) Ψ is Hausdorff continuous with compact values in Γ if and only if (Hh(γ0)) holds.

Conclusions of Chapter 1

In this chapter, we obtained the following main results:

- Give some gap functions for problems (QEP1) and (QEP2) (Denifition 1.3.1 and

Theorem 1.3.2). Then, establish continuity property of these functions (Theorem 1.3.4).

- Establish upper semicontinuity of solution mappings for problems (QEP1) and

(QEP2) (Theorem 1.4.1). Base on the gap functions, we study two key hypotheses

(Hp(γ0)) and (Hh(γ0)). Afterwards, we prove that these hypotheses are not only suffi-

cient but also necessary for the Hausdorff lower semicontinuity and Hausdorff continuity

of solution mappings to these problems (Theorem 1.4.6 and Theorem 1.4.7).

- From the main results in Section 1.3, we derive several results on Hausdorff (lower)

continuity properties of the solution mappings in the special cases of variational inequal-

ities of the Minty type and the Stampacchia type (Corollary 1.5.1 and Corollary 1.5.3).

These results were published in the article:

L. Q. Anh and N. V. Hung (2018), Gap functions and Hausdorff continuity of solution

mappings to parametric strong vector quasiequilibrium problems, Journal of Industrial

and Management Optimization, 14, 65-79.
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CHAPTER 2

CONVERGENCE OF SOLUTION SETS FOR

QUASIEQUILIBRIUM PROBLEMS

In this chapter, we consider vector quasiequilibrium problems under perturbation

in terms of suitable asymptotically solving sequences, not embedding given problems

into a parameterized family. By employing some types of convergences for mapping and

set sequences, we obtain the Painlevé-Kuratowski upper convergence of solution sets for

the reference problems. Then, using nonlinear scalarization functions, we propose gap

functions for such problems, and later employing these functions, we study necessary and

sufficient conditions for Painlevé-Kuratowski lower convergence and Painlevé-Kuratowski

convergence. As an application, we discuss the special case of vector quasivariational

inequality.

2.1 Sequence of quasiequilibrium problems

Let X, Y, Z be metric linear spaces, A ⊂ X,B ⊂ Y be nonempty compact subsets.

Recall that E is called a metric linear space iff it is both a metric space and a linear space

and the metric d of E is translation invariant. Let K : A⇒ A, T : B ⇒ B be set-valued

mappings and f : A × B × A → Z be a single-valued mapping. Let C : A ⇒ Z be a

set-valued mapping such that for each x ∈ A, C(x) is a proper, closed and convex cone

in Z with intC(x) 6= ∅.
We consider the following generalized vector quasiequilibrium problem.

(WQEP) finding x̄ ∈ K(x̄) and z̄ ∈ T (x̄) such that

f(x̄, z̄, y) ∈ Y \ −intC(x̄),∀y ∈ K(x̄).

For sequences of set-valued mappings Kn : A ⇒ A, Tn : A ⇒ Y , and single-valued

mappings fn : A × B ×A → Z, for n ∈ N \ {0}, we consider the following sequence of

generalized vector quasiequilibrium problems.

(WQEP)n finding x̄ ∈ Kn(x̄) and z̄ ∈ Tn(x̄) such that

fn(x̄, z̄, y) ∈ Y \ −intC(x̄),∀y ∈ Kn(x̄).
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We denote the solution sets of problems (WQEP) and (WQEP)n by S(f, T,K) and

S(fn, Tn, Kn), respectively (resp).

Definitions 2.1.1. A sequence of sets {Dn}, Dn ⊂ X, is said to upper converge

(lower converge) in the sense of Painlevé-Kuratowski to D if lim sup
n→∞

Dn ⊂ D (D ⊂

lim inf
n→∞

Dn, resp). {Dn} is said to converge in the sense of Painlevé-Kuratowski to D if

lim sup
n→∞

Dn ⊂ D ⊂ lim inf
n→∞

Dn. The set-valued mapping G is said to be continuous at x0

if is both outer semicontinuous and inner semicontinuous at x0.

Definitions 2.1.2. A sequence of sets {Dn}, Dn ⊂ X, is said to upper converge

(lower converge) in the sense of Painlevé-Kuratowski to D if lim sup
n→∞

Dn ⊂ D (D ⊂

lim inf
n→∞

Dn, resp). {Dn} is said to converge in the sense of Painlevé-Kuratowski to D if

lim sup
n→∞

Dn ⊂ D ⊂ lim inf
n→∞

Dn. The set-valued mapping G is said to be continuous at x0

if is both outer semicontinuous and inner semicontinuous at x0.

Definitions 2.1.3. A sequence of mappings {fn}, fn : X → Y , is said to converge

continuously to a mapping f : X → Y at x0 if lim
n→∞

fn(xn) = f(x0) for any xn → x0.

Definitions 2.1.4. Let {Gn}, Gn : X ⇒ Y , be a sequence of set-valued mappings

and G : X ⇒ Y be a set-valued mapping. {Gn} is said to outer-converge continu-

ously (inner-converge continuously) to G at x0 if lim sup
n→∞

Gn(xn) ⊂ G(x0) (G(x0) ⊂

lim infn→∞Gn(xn), resp) for any xn → x0. {Gn} is said to converge continuously to G

at x0 if lim sup
n→∞

Gn(xn) ⊂ G(x0) ⊂ lim inf
n→∞

Gn(xn) for any xn → x0.

Lemma 2.1.5. Let X and Z be convex Hausdorff topological vector spaces, and let

C : X ⇒ Z be a set-valued mapping such that C(x) is a proper, closed and convex cone in

Z with intC(x) 6= ∅ for all x ∈ X. Furthermore, let e : X → Z be the continuous selection

of the set-valued mapping intC(.). Consider a set-valued mapping V : X ⇒ Z given by

V (x) := Z \ intC(x) for all x ∈ X. The nonlinear scalarization function ξe : X ×Z → R
defined by ξe(x, y) := inf{r ∈ R | y ∈ re(x) − C(x)} for all (x, y) ∈ X × Z satisfies

following properties:

(i) ξe(x, y) < r ⇔ y ∈ re(x)− intC(x);

(ii) ξe(x, y) ≥ r ⇔ y 6∈ re(x)− intC(x);

(iii) If V and C are upper semicontinuous, then ξe is continuous.

Definition 2.1.6. A function q : A → R is said to be a gap function for problem

(WQEP) ((WQEPn), respectively), if:

(a) q(x) ≥ 0, for all x ∈ K(x);

(b) q(x) = 0 if and only if x ∈ S(f, T,K) (x ∈ S(fn, Tn, Kn), respectively.)
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Suppose that K,Kn, T, Tn are compact-valued, and f, fn are continuous. For simplic-

ity’s sake, we denote K0 := K, T0 := T , f0 := f . For n ∈ N, functions hn : A → R
given by

hn(x) = min
z∈Tn(x)

max
y∈Kn(x)

{−ξe(x, fn(x, z, y))} (2.1)

are well-defined. In the sequel, we assume further that fn are equilibrium mappings, i.e.,

fn(x, z, x) = 0 for all x ∈ A and n ∈ N.
Proposition 2.1.7. For each n ∈ N, the function hn(x) defined by (2.1) is a gap function

for problem (WQEPn).

Proposition 2.1.8. For n ∈ N, assume that

(i) Kn and Tn are continuous and compact-valued;

(ii) V , C are upper semicontinuous and e is continuous.

Then, hn defined by (2.1) are continuous.

Proposition 2.1.9. For n ∈ N , assume that

(i) Kn are continuous and compact-valued;

(ii) Tn are upper semicontinuous and compact-valued;

(iii) W is closed.

Then, S(fn, Tn, Kn) are compact.

2.2 Convergence of solution sets for equilibrium problems

In this section, we study the convergence of the solutions for (WQEP) and (WQEPn).

Theorem 2.2.1. Consider (WQEP) and (WQEPn), assume that

(i) {Kn} converges continuously to K;

(ii) {Tn} outer converges continuously to T ;

(iii) {fn} converges continuously to f ;

(iv) W is closed.

Then, lim sup
n→∞

S(fn, Tn, Kn) ⊂ S(f, T,K).

Motivated by the hypothesis (H1) of Zhao (in 1997), we introduce the following key

hypothesis and employ it to study the Painlevé-Kuratowski convergence of the solution

sets for (WQEP) and (WQEPn).
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(Hh): For any neighborhood U of the origin in X, there exist α ∈ (0,+∞) and n0 ∈ N
such that hn(x) ≥ α for all n ≥ n0 and x ∈ Kn(x) \ (S(fn, Tn, Kn) + U)).

Theorem 2.2.12. Consider (WQEP) and (WQEPn), impose all assumptions of Propo-

sition 2.1.9 and assume further that

(i) {Kn} converges continuously to K;

(ii) {Tn} converges continuously to T ;

(iii) {fn} converges continuously to f ;

(iv) V , C are upper semicontinuous.

Then, S(f, T,K) ⊂ lim inf
n→∞

S(fn, Tn, Kn) if and only if (Hh) holds.

Theorem 2.2.13. Assume that all assumptions of Theorem 2.2.12 are satisfied. Then,

S(fn, Tn, Kn) converge to S(f, T,K) in the sense of Painlevé - Kuratowski if and only if

(Hh) holds.

2.3 Application to quasivariational inequality

Let X,Z be Banach spaces, Y = L(X,Z), the space of all linear continuous opera-

tors from X into Z, A,B,C,K, T,Kn, Tn be as in Sect. 2.1. Denoted by 〈z, x〉 the value

of a linear operator z ∈ L(X, Y ) at x ∈ X. Then, we consider the generalized vector

quasivariational inequalities

(QVI) Finding x̄ ∈ K(x̄) and z̄ ∈ T (x̄) such that

〈z, y − x̄〉 ∈ Y \ −intC(x̄),∀y ∈ K(x̄).

(QVI)n Finding x̄ ∈ Kn(x̄) and z̄ ∈ Tn(x̄) such that

〈z, y − x̄〉 ∈ Y \ −intC(x̄),∀y ∈ Kn(x̄).

We denote the solution sets of (QVI) and (QVI)n by S(T,K) and S(Tn, Kn), resp. By

setting f(x, z, y) = fn(x, y, z) = 〈z, y−x〉, then (QVI) becomes a special case of (WQEP).

By applying Theorem 2.2.1, we obtain the following result.

Corollary 2.3.1. Consider (QVI) and (QVI)n, assume that

(i) {Kn} converges continuously to K;

(ii) {Tn} outer converges continuously to T ;

(iii) W is closed.
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Then, lim sup
n→∞

S(Tn, Kn) ⊂ S(T,K).

Corollary 2.3.1. Consider (QVI) and (QVI)n, assume that

(i) {Kn} converges continuously to K;

(ii) {Tn} outer converges continuously to T ;

(iii) W is closed.

Then, lim sup
n→∞

S(Tn, Kn) ⊂ S(T,K).

For the lower convergence in the sense of Painlevé - Kuratowski for (QVI), we will

apply Theorem 2.2.12 to such problems.

Corollary 2.3.2. For n ∈ N, consider (QVI) and (QVI)n and assume that

(i) Kn are continuous and compact-valued, and {Kn} converges continuously to K;

(ii) Tn are upper semicontinuous and compact-valued, and {Tn} converges continuously

to T ;

(iii) V , C are upper semicontinuous;

(iv) W is closed.

Then, S(T,K) ⊂ lim inf
n→∞

S(Tn, Kn) if only if (Hh) holds.

Corollary 2.3.4. Impose all assumptions of Corollary 2.3.2. Then, S(Tn, Kn) converge

to S(T,K) in the sense of Painlevé - Kuratowski if only if (Hh) holds.

Conclusions of Chapter 2

In this chapter, we obtained the following main results

- Give gap function sequences for problems (WQEP) and (WQEP)n (Proposition 2.1.7).

Then, establish continuity property of these functions (Proposition 2.1.8).

- Establish Painlevé-Kuratowski upper convergence of solution sets for the reference

problems (Theorem 2.2.1). Base on the gap function sequences, we study the key hy-

potheses (Hh). Afterwards, we study necessary and sufficient conditions for Painlevé-

Kuratowski lower convergence and Painlevé-Kuratowski convergence (Theorem 2.2.12

and Theorem 2.2.13).

- As an application, we discuss the special case of vector quasivariational inequality

(Corollary 2.3.1, Corollary 2.3.2 and Corollary 2.3.4).

These results were published in the article:

L. Q. Anh, T. Bantaojai, N. V. Hung, V. M. Tam and R. Wangkeeree (2018), Painlevé-

Kuratowski convergences of the solution sets for generalized vector quasiequilibrium

problems, Computational and Applied Mathematics, 37, 3832–3845.
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CHAPTER 3

STABILITY AND WELL-POSEDNESS FOR BILEVEL

EQUILIBRIUM PROBLEMS.

In this chapter, we study stability of solutions and Levitin-Polyak well-posedness

for bilevel vector equilibrium problems. Firstly, we studty the (Hausdorff) upper semi-

continuity and (Hausdorff) lower semicontinuity of solutions for parametric bilevel vector

equilibrium problems. For the applications, we obtain the stability results for the para-

metric vector variational inequality problems with equilibrium constraints and paramet-

ric vector optimization problems with equilibrium constraints. Secondly, we introduce

the concepts of Levitin-Polyak well-posedness and Levitin-Polyak well-posedness in the

generalized sense for strong bilevel vector equilibrium problems. Then, we investigate suf-

ficient and/or necessary conditions of the Levitin-Polyak well-posedness for the reference

problems. Some metric characterizations of these Levitin-Polyak well-posedness concepts

in the behavior of approximate solution sets are also discussed. As an application, we

consider the special case of traffic network problems with equilibrium constraints.

3.1 Stability of solution mappings for bilevel equilibrium

problems

Let X, Y, Z be Hausdorff topological vector spaces. A and Λ are nonempty convex

subsets of X and Y , respectively, and C ⊂ Z is a solid pointed closed convex cone. Let

K1,2 : A× Λ ⇒ A be two multifunctions, and f : A× A× Λ→ Z be a vector function.

For each λ ∈ Λ, we consider the following parametric vector quasiequilibrium problem:

(SQEP) Find x̄ ∈ K1(x̄, λ) such that

f(x̄, y, λ) ∈ C, ∀y ∈ K2(x̄, λ).

For each λ ∈ Λ, let E(λ) = {x ∈ A | x ∈ K1(x, λ)} and we denote the solution set of

(SQEP) by S(λ), i.e., S(λ) = {x ∈ K1(x, λ) | f(x, y, λ) ∈ C, ∀y ∈ K2(x, λ)}.
LetW be a Hausdorff topological vector space, and Γ be a nonempty subset ofW . Let

B = A×Λ and h : B×B×Γ→ Z be a vector function, C ′ ⊂ Z be a solid pointed closed

convex cone. We consider the following parametric bilevel vector equilibrium problem:
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(BEP) finding x̄∗ ∈ graphS−1 such that

h(x̄∗, y∗, γ) ∈ C ′, ∀y∗ ∈ graphS−1,

where graphS−1 = {(x, λ) | x ∈ S(λ)} is the graph of S−1.

For each γ ∈ Γ, we denote the solution set of (BEP) by Φ(γ), and we assume that

Φ(γ) 6= ∅ for each γ in a neighborhood of the reference point.

For a multifunction G : X ⇒ Z between two linear spaces, G is said to be convex

(concave) on a convex subset A ⊂ X if, for each x1, x2 ∈ A and t ∈ [0, 1],

tG(x1) + (1− t)G(x2) ⊂ G(tx1 + (1− t)x2)

(G(tx1 + (1− t)x2) ⊂ tG(x1) + (1− t)G(x2), respectively).

Let ϕ : X → Z be a vector function and C ⊂ Z be a solid pointed closed convex

cone. For θ ∈ Z, we use the following notations for level sets of ϕ with respect to C, for

different ordering cones (by the context, no confusion occurs).

L≥Cθϕ :={x ∈ X | ϕ(x) ∈ θ + C},
L 6>Cθϕ :={x ∈ X | ϕ(x) 6∈ θ + intC},

and similarly for other level sets L≤Cθϕ,L6<Cθϕ,L6≥Cθϕ,L>Cθϕ, etc.

Now, we discuss the upper semicontinuity of the solutions for problem (BEP).

Theorem 3.1.1. Consider (BEP), assume that Λ is compact and the following condi-

tions hold:

(i) E is usc with compact values, and K2 is lsc;

(ii) L≥C0f is closed on A× A× Λ;

(iii) L≥C′0h is closed on B ×B × {γ0}.

Then Φ is both usc and closed at γ0.

Theorem 3.1.5. Theorem 3.1.1 is still valid if assumption (i) is replaced by

(i’) A is compact, K1 is closed, and K2 is lsc.

For each γ ∈ Γ, we consider the following an auxiliary subset of Φ:

Φ∗(γ) = {x∗ ∈ graphS−1 |f(x, y, λ) ∈ intC, h(x∗, y∗, γ) ∈ intC ′,

∀y ∈ K2(x, λ),∀y∗ ∈ graphS−1}.

Definition 3.1.7. Let X,Z be Hausdorff topological vector spaces, ϕ : X → Z be a

vector function, and C ⊂ Z be a solid pointed closed convex cone. The function ϕ is
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said to be generalized C-quasiconcave in a nonempty convex subset A ⊂ X, if for each

x1, x2 ∈ A, from ϕ(x1) ∈ C and ϕ(x2) ∈ intC, it follows that, for each t ∈ (0, 1),

ϕ(tx1 + (1− t)x2) ∈ intC.

Theorem 3.1.8. Consider (BEP), assume that Λ is compact and the following condi-

tions hold:

(i) E is convex and continuous with compact values, K2 is concave and continuous with

compact values;

(ii) L6>C0f , L≥C0f are are closed on A×A×Λ and L 6>C′0h is closed on B ×B ×{γ0};

(iii) f is generalized C-quasiconcave;

(iv) h(·, ·, y∗, γ0) is generalized C ′-quasiconcave.

Then Φ is lower semicontinuous at γ0.

Passing to the Hausdorff lower semicontinuity, continuity and Hausdorff continuity

of the solution mapping for problem (BEP), we obtain the following result.

Theorem 3.1.12. Impose all the assumptions of Theorem 3.1.8 and assume further that

(v) L≥C′0h(·, ·, y∗, γ0) is closed on B.

Then Φ is Hausdorff lower semicontinuous at γ0.

Theorem 3.1.14.

(i) Suppose that all the assumptions of Theorem 3.1.8 are satisfied. Then Φ is contin-

uous at γ0, if the conditions of Theorem 3.1.1 or that of Theorem 3.1.5 hold.

(ii) Suppose that all the assumptions of Theorem 3.1.12 are satisfied. Then Φ is Haus-

dorff continuous at γ0, if the conditions of Theorem 3.1.1 or that of Theorem 3.1.5

hold.

Now, we discuss only some results for two important special cases of (BEP). Firstly, we

consider variational inequality with equilibrium constraints. LetX, Y, Z,W,C,C ′, A,B,Γ,

Λ, K1, K2, f be as in problem (BEP), and let L(X × Y, Z) be the space of all linear con-

tinuous operators from X×Y into Z, and T : Γ×B → L(X×Y, Z) be a vector function.

〈z, x〉 denotes the value of a linear operator z ∈ L(X × Y ;Z) at x ∈ B. For each γ ∈ Γ,

we consider the following parametric vector variational inequality with equilibrium con-

straints: (VIEC) finding x̄∗ ∈ graphS−1 such that

〈T (x̄∗, γ), y∗ − x̄∗〉 ∈ C ′, ∀y∗ ∈ graphS−1,
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where S is the solution mapping of problem (SQEP).

Setting h(x∗, y∗, γ) = 〈T (x∗, γ), y∗ − x∗〉, we see that (VIEC) becomes a special case

of (BEP). For γ ∈ Γ, we denote the solution set of (VIEC) by Ψ(γ).

The following results are derived from Theorem 3.1.1.

Corollary 3.1.15. Consider (VIEC), assume that

(i) E is usc with compact values, and K2 is lsc;

(ii) L≥C0f is closed on A× A× Λ;

(iii) the set {(x∗, y∗, γ) | 〈T (x∗, γ), y∗ − x∗〉 ∈ C ′} is closed on B ×B × {γ0}.

Then Ψ is both upper semicontinuous and closed at γ0.

Secondly, we consider optimization problems with equilibrium constraints. LetX, Y, Z,

W,A,B,C,C ′,Λ,Γ, K1, K2, f be as in problem (BEP), and let g : B × Λ→ Z be a vec-

tor function. For each γ ∈ Γ, we consider the following parametric vector optimization

problem with equilibrium constraints:

(OPEC) finding x̄∗ ∈ graphS−1 such that

g(y∗, γ) ∈ g(x̄∗, γ) + C ′,∀y∗ ∈ graphS−1,

where S is the solution mapping of problem (SQEP).

Putting h(x∗, y∗, γ) = g(y∗, γ) − g(x∗, γ), we see that (OPEC) is a special case of

(BEP). For γ ∈ Γ, we denote the solution set of problem (OPEC) by Ξ(γ).

Applying Theorem 3.1.1, we obtain the following result.

Corollary 3.1.15. Consider (OPEC), assume that

(i) E is usc with compact values, and K2 is lsc;

(ii) L≥C0f is closed on A× A× Λ;

(iii) the set {(x∗, y∗, γ) | g(y∗, γ)− g(x∗, γ) ∈ C ′} is closed on B ×B × {γ0}.

Then Ξ is both upper semicontinuous and closed at γ0.

3.2 Well-posedness for bilevel equilibrium problems

Let X,W,Z be Banach spaces, A and Λ be nonempty closed subsets of X and W ,

respectively (resp), and C1 : A ⇒ Z be a set-valued mapping such that for each x ∈ A,
C1(x) is a pointed, closed and convex cone with intC1(x) 6= ∅, where int(·) is the interior
of (·). For i = 1, 2, let Ki : A× Λ ⇒ A be set-valued mappings, and f : A×A× Λ→ Z
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be a vector mapping. For λ ∈ Λ, we consider the following parametric quasi-equilibrium

problem. (MSQEP) finding x̄ ∈ K1(x̄, λ) such that

f(x̄, y, λ) ∈ C1(x̄),∀y ∈ K2(x̄, λ).

For each λ ∈ Λ, we denote the solution set of (MSQEP) by S(λ).

Let Y be a Banach space, B = A × Λ, C2 : B ⇒ Y be a multifunction such that

for each x∗ ∈ B, C2(x
∗) is a pointed, closed and convex cone with intC2(x

∗) 6= ∅, and
h : B × B → Y be a vector mapping. We consider the following strong bilevel vector

equilibrium problem. (MBEP) finding x̄∗ ∈ graphS−1 such that

h(x̄∗, y∗) ∈ C2(x̄
∗),∀y∗ ∈ graphS−1,

where S(λ) is the solution set of (MSQEP) and graphS−1 := {(x, λ) ∈ A×Λ | x ∈ S(λ)}.
We denote the solution set of (MBEP) by Ψ, i.e.,

Ψ = {x̄∗ =(x̄, λ) ∈ graphS−1 | f(x̄, y, λ) ∈ C1(x̄),∀y ∈ K2(x̄, λ) and

h(x̄∗, y∗) ∈ C2(x̄
∗), ∀y∗ = (y, λ) ∈ graphS−1}.

Picking up ideas from Tanaka (in 1997), we propose the notions of semicontinuity

involving variable cone for a vector mapping.

Corollary 3.2.1. Let C : X ⇒ Z be a set-valued mapping such that for each x ∈ X,

C(x) is a pointed, closed and convex cone with intC(x) 6= ∅. Let f : X × Λ → Z be

a vector function. f is said to be upper semicontinuous with respect to C (C-usc) at

(x0, λ0) if for any neighborhood V of the origin θZ in Z, there is a neighborhood U of

(x0, λ0) such that for all (x, λ) ∈ U , f(x, λ) ∈ f(x0, λ0) + V − C(x0).

Proposition 3.2.2. The following conditions are equivalent to each other.

(a) f is C-upper semicontinuous.

(b) For each (x0, λ0) ∈ X × Λ and d ∈ intC(x0), there is a neighborhood U of (x0, λ0)

such that f(x, λ) ∈ f(x0, λ0) + d− intC(x0) for all (x, λ) ∈ U .

(c) For each (x0, λ0) ∈ X × Λ and a ∈ Y , f−1(a− intC(x0)) is open.

Proposition 3.2.3. Assume that f and g are C-upper semicontinuous and k ∈ (0,+∞).

Then, (a) f + g is C-upper semicontinuous, (b) kf is C-upper semicontinuous.

Next, we propose the concepts of Levitin-Polyak well-posedness for bilevel vector

equilibrium problems and give some metric characterizations of these concepts. Let e1 :

A → Z and e2 : B → Y be continuous mappings satisfying e1(x) ∈ intC1(x) and

e2(x
∗) ∈ intC2(x

∗) for every x ∈ A, and x∗ ∈ B, resp.

Definition 3.2.4. A sequence {x∗n} := {(xn, λn)} is called a Levitin-Polyak (LP) ap-

proximating sequence for (MBEP) if
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(i) {x∗n} := {(xn, λn)} ⊂ A× Λ, ∀n ∈ N;

(ii) there exists a sequence {εn} ⊂ R+ converging to 0 such that

d(xn, K1(xn, λn)) ≤ εn, ∀n ∈ N,

f(xn, y, λn) + εne1(xn) ∈ C1(xn), ∀y ∈ K2(xn, λn), and

h(x∗n, y
∗) + εne2(x

∗
n) ∈ C2(x

∗
n),∀y∗ ∈ graphS−1,

where d(a,M) := infb∈M d(a, b) is the point-to-set distance.

Definition 3.2.5. The problem (MBEP) is said to be Levitin-Polyak (LP) well-posed if

(i) Ψ is a singleton;

(ii) every LP approximating sequence {x∗n} for (MBEP) converges to the unique solu-

tion.

Definition 3.2.6. The problem (MBEP) is said to be Levitin-Polyak (LP) well-posed

in the generalized sense if

(i) Ψ is nonempty;

(ii) for every LP approximating sequence {x∗n} for (MBEP), there is a subsequence

converging to some point of Ψ.

For ε ∈ R+, the approximate solution set of (MBEP) is given by

Ψ̃(ε) := {x∗ =(x, λ) ∈ graphS−1 | d(x,K1(x, λ)) ≤ ε,

f(x, y, λ) + εe1(x) ∈ C1(x),∀y ∈ K2(x, λ),

h(x∗, y∗) + εe2(x
∗) ∈ C2(x

∗), ∀y∗ ∈ graphS−1}.

Theorem 3.2.8. Consider (MBEP), assume that A and Λ are compact and the following

conditions hold

(i) K1 is upper semicontinuous and compact-valued, and K2 is lower semicontinuous;

(ii) f is C1-upper semicontinuous;

(iii) for each y∗ ∈ graphS−1, h(·, y∗) is C2-upper semicontinuous;

(iv) C1 and C2 are Hausdorff upper semicontinuous.

Then, Ψ̃ is upper semicontinuous and compact-valued at 0.

Theorem 3.2.9. The problem (MBEP) is LP well-posed in the generalized sense if and

only if Ψ̃ is upper semicontinuous and nonempty compact-valued at 0.
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Combining Theorems 3.2.8 and 3.2.9, we obtain the relationship between the LP

well-posedness and existence solutions of (MBEP).

Theorem 3.2.10. Assume that all assumptions of Theorem 3.2.8 are satisfied. Then,

(i) the problem (MBEP) is LP well-posedness in the generalized sense if and only if Ψ

is nonempty,

(ii) the problem (MBEP) is LP well-posedness if and only if Ψ is a singleton.

We now present a metric characterization for the LP well-posedness in terms of the

behavior of approximate solution sets without the compactness of A and Λ.

Theorem 3.2.11. Suppose that assumptions (i)-(iv) of Theorem 3.2.8 are satisfied.

Then, the problem (MBEP) is LP well-posed if and only if

Ψ̃(ε) 6= ∅, ∀ε ≥ 0 and diamΨ̃(ε)→ 0 as ε→ 0.

Next, we study the traffic network problems with equilibrium constraints as an appli-

cation. We first recall the model of traffic network problems considered by many authors

such as in Wardrop (in 1952), De Luca (in 1995) and Anh and Khanh (in 2010). Consider

a transportation network L = (N,A), where N denotes the set of nodes and A denotes

the set of arcs. Let Q = (Q1, Q2, ..., Qn) be the set of origin-destination pairs (O/D

pairs in short). Assume that a pair Qi, i = 1, 2, ..., n, is connected by a set Si of paths

and Si contains si ≥ 1 paths. Let F = (F1, F2, ..., Fm) be the paths vector flow, where

m =
∑n

i=1 si. Let the capacity restriction be

F ∈ C = {F ∈ Rm : 0 ≤ ωp ≤ Fp ≤ Ωp, p = 1, 2, ...,m},

where ωp and Ωp are given real numbers, and C ⊂ Rm is nonempty. Assume further that

the travel cost on the path flow Fp, p = 1, 2, ...,m, depends on the whole path vector

flow F and Tp(F, λ) ≥ 0, where λ ∈ Λ is a perturbing parametric. Then, the path cost

vector is given by

T (F, λ) = (T1(F, λ), T2(F, λ), ..., Tm(F, λ)).

A path flow vector F̄ is said to be an equilibrium flow if

∀Qi,∀ξ ∈ Si, ∀τ ∈ Si such that

[Tξ(F̄ , λ) < Tτ (F̄ , λ)]⇒ [F̄ξ = Ωξ or F̄τ = ωτ ].

Suppose that the travel demands ψi of the O/D pair Qi, i = 1, 2, ..., n, depend on λ ∈ Λ

and also on the equilibrium flows F̄ . Hence, considering all the O/D pairs, we have a
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mapping ψ : Rm
+ × Λ→ Rn

+. We use the Kronecker notation

φiτ =

{
1 if τ ∈ Si,
0 if τ 6∈ Si.

and

φ = {φiτ}, i = 1, 2, ..., n, and τ = 1, 2, ...,m.

Then, the path vector flows meetings the travel demands are called the feasible path

vector flows and form the constraint set

K(F̄ , λ) = {F ∈ C | φF = ψ(F̄ , λ)}.

Lemma 3.2.12. A path vector flow F̄ ∈ K(F̄ , λ) is an equilibrium flow if and only if it

is a solution of the following quasivariational inequality

(TN) finding F̄ ∈ K(F̄ , λ) such that

〈T (F̄ , λ), H − F̄ 〉 ≥ 0, ∀H ∈ K(F̄ , λ).

Let X = W = Rm, Z = Rn, Y = R, C2(F
∗) = R+, K1(F, λ) = K2(F, λ) = K(F, λ)

and A, Y,Λ, C1(F ), e1 be as in problem (MBEP). Let L(X, Y ) be the space of all linear

continuous operators from X into Y , and T : Y → L(X,P ) be a vector function. We

consider the following traffic network problems with equilibrium constraints.

(TNEC) finding F̄ ∗ = (F̄ , λ̄) ∈ graphS−1 such that

〈T (F̄ ∗), H∗ − F̄ ∗〉 ≥ 0,∀H∗ = (H,λ) ∈ graphS−1,

where S(λ) is the solution set of (MSQEP). We denote the solution set of (TNEC) by Φ.

For ε ∈ R+, we denote the approximate solution set of (TNEC) by Φ̃(ε).

Φ̃(ε) := {F ∗ =(F, λ) ∈ graphS−1 | d(F,K(F, λ)) ≤ ε,

f(F,H, λ) + εe1(F ) ∈ C1(F ), ∀H ∈ K(F, λ),

〈T (F ∗), H∗ − F ∗〉+ ε ≥ 0, ∀H∗ ∈ graphS−1}.

Corollary 3.2.17. Consider (TNEC), assume that

(i) ψ is continuous;

(ii) f is C1-upper semicontinuous;

(iii) the function (F ∗, H∗) 7−→ 〈T (F ∗), H∗ − F ∗〉 is upper semicontinuous.
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Then, (TNEC) is LP well-posed in the generalized sense if and only if Φ̃ is upper semi-

continuous and compact-valued at 0.

Corollary 3.2.18. Suppose that all conditions in Corollary 3.2.17 are satisfied. Then,

(TNEC) is LP well-posed if and only if

Φ̃(ε) 6= ∅,∀ε ≥ 0, and diamΦ̃(ε)→ 0 as ε→ 0.

Conclusions of Chapter 3

In this chapter, we obtained the following main results

- Establish the parametric bilevel vector equilibrium problems (MBEP). Afterwards,

we study the semicontinuity, continuity of solution mappings for these problems (Theo-

rem 3.1.1, Theorem 3.1.5, Theorem 3.1.8, Theorem 3.1.12 and Theorem 3.1.14). For the

applications, we obtain the stability results for the parametric vector variational inequal-

ity problems with equilibrium constraints and parametric vector optimization problems

with equilibrium constraints (Corollary 3.1.15 and Corollary 3.1.17).

- Establish the sufficient and necessary conditions of the Levitin-Polyak well-posedness

for the reference problems and discuss some metric characterizations of these Levitin-

Polyak well-posedness concepts in the behavior of approximate solution sets (Theo-

rem 3.2.8, Theorem 3.2.9, Theorem 3.2.10 and Theorem 3.2.11). Application to traffic

network problems with equilibrium constraints (Corollary 3.2.17 and Corollary 3.2.18)

These results were published in the article:

1. L. Q. Anh and N. V. Hung (2018), Stability of solution mappings for parametric

bilevel vector equilibrium problems, Computational and Applied Mathematics, 37,

1537–1549.

2. L. Q. Anh and N. V. Hung (2018), Levitin-Polyak well-posedness for strong bilevel

vector equilibrium problems and applications to traffic network problems with equi-

librium constraints, Positivity, 22, 1223–1239.
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GENERAL CONCLUSIONS AND RECOMMENDATIONS

1 General conclusions

In this thesis, we obtain some main results:

- Establish the parametric gap functions for (QEP1) and (QEP2) and two key hy-

potheses (Hp(γ0)) and (Hh(γ0)). Afterwards, we prove that these hypotheses are not

only sufficient but also necessary for the Hausdorff lower semicontinuity and Hausdorff

continuity of solution mappings to these problems. As an application, we derive several

results on Hausdorff (lower) continuity properties of the solution mappings in the special

cases of variational inequalities of the Minty type and the Stampacchia type.

- Establish gap function sequences for problems (WQEP) and (WQEP)n and Painlevé-

Kuratowski upper convergence of solution sets for the reference problems. Base on the

gap function sequences, we study the key hypotheses (Hh). Afterwards, we study neces-

sary and sufficient conditions for Painlevé-Kuratowski lower convergence and Painlevé-

Kuratowski convergence and application to vector quasivariational inequality.

- Establish the semicontinuity, continuity of solution mappings for the parametric

bilevel vector equilibrium problems (MBEP) and application to parametric vector varia-

tional inequality problems with equilibrium constraints and parametric vector optimiza-

tion problems with equilibrium constraints.

- Establish the sufficient and/or necessary conditions of the Levitin-Polyak well-

posedness for bilevel vector equilibrium problems and discuss some metric characteri-

zations of these Levitin-Polyak well-posedness concepts in the behavior of approximate

solution sets and application to traffic network problems with equilibrium constraints.

2 Recommendations

Next time, we will continue the study on the following problems:

- Study the existence of solutions for optimization related problems as such as quasiequi-

librium problems, quasivariational inequalities, bilevel equilibrium problems, variational

inequality problems with equilibrium constraints,...

- Study the continuity property of solution sets for optimization related problems

under weaker assumptions.

- Study several kinds of convergence for optimization related problems by using func-

tion and set sequences.

- Study some kinds of well-posed for optimization related problems by using gap

functions.
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