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PREFACE

1. Rationale

Recently, the ergodic theorems and the strong laws of large numbers for set-valued

random variables have been studied and applied in stochastic optimization, statistics,

mathematical economics, medicine and some other areas. It is well known that the theory

of set-valued random variables is a natural extension of that of general random elements.

Hence, the researching of ergodic theorems and the laws of large numbers for random sets

has not only theoretical meanings, but also practical meanings.

The practice requires us to study the multi-indexed array of random variables.

For multi-indexed structure, the usual partial order relation in the index set Nd is not

complete. So, if we extend the limit theorems for random sets from the sequence case to

the multi-indexed array as nmax → ∞ or as nmin → ∞, then we will have a lot of new

things. This makes the results of multi-valued strong laws of large numbers and ergodic

theorems more interesting.

The study of ergodic theorems was started in 1931 − 1932 by J. v. Neumann and

G. D. Birkhoff, having its origins in statistical mechanics. In recent decades, the Birkhoff’s

ergodic theorem (BET) has been considerable interest in two directions: to

multidimensional structure and to random sets. In the first direction, in 1951, N. Dunford

and A. Zygmund established the BET for noncommutative families of measure-preserving

transformations with discrete and continuous parameters, respectively. Then later,

N. Dunford, J. T. Schwartz (in 1956) and N. A. Fava (in 1972) generalized these

results to those at the operator theoretic level. Moreover, many authors generalized

them in the direction of weighted averages such as R. L. Jones and J. Olsen (in 1994),

M. Lin and M. Weber (2007), F. Mukhamedov, M. Mukhamedov and S. Temir (in 2008),

etc. In the second direction, in 1991, J. Bán established the BET for compact valued

random sets or fuzzy random sets in a Banach space with respect to the convergence in

the Hausdorff distance. In 2003, C. Choirat, C. Hess and R. A. Seri obtained the BET

for convex valued random sets with respect to the Kuratowski convergence. Recently, in

2011, H. Ziat proved the BET for random sets with the types of convergence: Mosco,

Wijsman and Slice. Hence, the studying BET for both multidimensional structure and

random sets is an up-to-date tendency.

The first multivalued strong law of large numbers was proved by Z. Artstein and

R. A. Vitale in 1975 for independent identically distributed (i.i.d) random variables whose

values are compact subsets of Rd, with the convergence in Hausdorff distance. This result
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is extended in two directions: to compact valued random variables and to closed valued

random variables. In the first direction, we can refer to some works of the following

authors: N. Cressie (in 1978), C. Hess (in 1979), M. L. Puri and D. A. Ralescu (in 1983),

F. Hiai (in 1984), Z. Artstein and J. C. Hansen (in 1985), P. Terán and I. Molchanov

(in 2006), etc. In the second direction, the strong law of large numbers was proved at

first in 1981 by Z. Artstein and S. Hart on Kuratowski for i.i.d. random variables taking

values are closed subsets of Rd. Later, it was studied by F. Hiai and C. Hess for Mosco

convergence and Wijsman convergence. Hence, the studying strong law of large numbers

for random sets is also an up-to-date tendency of the probability theory.

Most of the results for strong laws of large numbers was concerned with i.i.d random

variables. While it is not always possible to assume that the random variables are

independent, they can be often dependent. A new direction for multi-valued strong law

of large numbers is studying for the following kinds of dependency of random sets: pair

independent, exchangeable, 2-exchangeable. This direction has practical meanings.

The strong law of large numbers and the ergodic theorems are usually studied to the

random variables taking values are compact or convex or closed subsets, ... of a Banach

space. So, the results in this direction and their proofs are the combination between

probability theory, convex analysis and functional analysis.

The convergence in the Hausdorff distance is usually used to the compact valued

random variables. For the closed valued random variables, one usually use the types

of convergence: Kuratowski, Mosco and Wijsman. The Kuratowski convergence is well-

suited to random sets in the finite-dimensional space. The Mosco convergence is an

extension of Kuratowski convergence to the case of random sets in the Banach space. This

type of convergence is well-suited to the reflexive Banach spaces and are most helpful for

applications to the variational inequalities. For non reflexive Banach spaces, the Wijsman

convergence has been introduced and is well-suited to study the rates of convergence,

and is able to allow us to prove the strong law of large numbers with respect to Slice

convergence which is most helpful for applications to stochastic optimization. Thus, the

studying limit theorems for random sets with respect to the Mosco convergence and the

Wijsman convergence has a lot of meanings.

With the above reasons, we have chosen the topic for the thesis that is: “The ergodic

theorems and the strong laws of large numbers for array of random sets”.

2. Objective of the research

The objective of the thesis is to establish the multidimensional Birkhoff’s ergodic
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theorem, to establish the strong laws of large numbers for double array and triangular

array of random sets with several conditions.

3. Subject of the research

- The multidimensional Birkhoff’s ergodic theorem.

- The strong laws of large numbers for array of random sets.

4. Scope of the research

The multidimensional Birkhoff’s ergodic theorem, the strong laws of large numbers for

double array and for triangular array of random sets in a separable real Banach space. The

types of convergence are considered: Mosco convergence and Wijsman convergence. For

the multi-valued strong law of large numbers, the random sets are required: independent,

or pair independent, or 2-exchangeable.

5. Methodology of the research

We use theoretical research method belonging to the areas: probability theory, convex

analysis and functional analysis. Technically, we use convexification technique, types of

Stolz’s theorem, etc.

6. Contribution of the thesis

The results of thesis contribute more abundant for the researching directions of limit

theorems in probability theory.

The thesis is contribution of material for the students, the master students, the

doctoral students belonging to the speciality: Theory of Probability and Mathematical

Statistics.

7. Organization of the research

7.1. Overview of the research

In this thesis, we establish the BET and the strong law of large numbers for array of

random sets with respect to Mosco convergence and Wijsman convergence.

At first, we introduce some basic notions of probability theory on the space of closed

subsets of Banach space. Later, we prove some results of convergence relatively to the

topologies Mosco and Wijsman for multi-indexed array of closed subsets of separable real

Banach space and for multi-indexed array of random sets.

For the ergodic theorems, we establish the multidimensional BET for the cases:

single-values and multi-values. Especially, the mult-valued BET is proved for two-indexed

structure.
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For the strong law of large numbers for double array of random sets, we consider

for the case as m ∨ n → ∞. Combine the type of Stolz’s theorem for double array, the

property of convergence as m∨n→∞, the convexification technique for double array and

the previous lemmas, we establish the strong law of large numbers on Mosco convergence

and Wijsman convergence for double array of random sets. The random sets are required:

p.i.i.d, or independent and taking closed-values of Rademacher type p Banach space, or

2-exchangeable.

For the strong law of large numbers for triangular array of random sets, we establish the

strong law of large numbers on Mosco convergence and Wijsman convergence for rowwise

independent random sets taking closed-values of Rademacher type p Banach space. To

do this, we construct type of Stolz’s theorem for the case of triangular array.

To establish the BET and the strong law of large numbers with respect to Mosco

convergence and Wijsman convergence, we develop the convexification technique from

the sequence case to double array case and to triangular array case.

7.2. The organization of the research

Besides the sections of usual notations, preface, general conclusions and

recommendations, list of the author’s articles related to the thesis and references, the

thesis is organized into four chapters.

Chapter 1 presents the basic knowledge of the family of all closed subsets of a Banach

space, the properties of functional analysis and convex analysis, establish some results of

convergence relatively to the topologies Mosco and Wijsman for array of closed subsets of

a Banach space and for array of random sets. Section 1.1 presents the preliminaries consist

of the notations, the definitions and the basic notions relatively to main results of thesis.

Section 1.2 presents the definition of the types of usual convergence in hyperspace of a

Banach space and prove some results of convergence relatively to the topologies Mosco

and Wijsman for multi-indexed array. Section 1.3 presents the results of convergence

relatively to the topologies Mosco and Wijsman for multi-indexed array of random sets.

These results are used to prove the BET and the multi-valued strong law of large numbers

in the next chapters.

Chapter 2 presents the BET for the multidimensional structure of single-valued or

multi-valued random variables. Section 2.1 presents some basic concepts and basic

properties of ergodic theory used to the next sections. In Section 2.2, we establish the

multidimensional BET for random elements in a separable real Banach space. This is a

key tool to establish the multi-valued BET having multidimensional structure. Section 2.3

studies the two-dimensional BET for random sets with respect to Mosco convergence and
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Wijsman convergence. In this section, we also prove the multidimensional multi-valued

BET without the ergodicity of the measure-preserving transformations. Section 2.4

studies the two-dimensional BET for fuzzy random sets with respect to Mosco

convergence.

Chapter 3 studies the strong law of large numbers for double array of random sets with

respect to Mosco convergence and Wijsman convergence. Section presents the essential

lemmas to prove main results of Chapter 3. Section 3.2 studies the strong law of large

numbers for double array of random sets with the cases: p.i.i.d, or independent and taking

closed-values of Rademacher type p Banach space, or 2-exchangeable.

Chapter 4 introduce the strong law of large numbers for triangular array of random

sets with respect to Mosco convergence and Wijsman convergence. Section 4.1 studies

the Stolz’s theorem for triangular array case. Section 4.2 studies the strong law of large

numbers for triangular array of rowwise independent random sets taking closed-values of

Rademacher type p Banach space.
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CHAPTER 1

SOME PROPERTIES
OF MOSCO CONVERGENCE AND WIJSMAN CONVERGENCE

In this chapter, we introduce some basic notions of probability theory on the space

of closed subsets of Banach space, study the types of convergence and the important

properties of functional analysis and convex analysis in this space. We establish some

results of convergence relatively to the topologies Mosco and Wijsman for multi-indexed

array of closed subsets of separable real Banach space and for multi-indexed array of

random sets. Main results of this chapter are based on the paper [1].

1.1. Preliminaries

In this thesis, if not added assume, we suppose that (Ω,A,P) is a probability space,

F is an sub-σ-field of A, (X, ‖ · ‖) is a separable real Banach space, BX is the Borel σ-field

of X, X∗ is the dual space of X. Let c(X) be the family of all nonempty closed subsets of

X.

We denoted by N (resp. Q) (resp. R) (resp. R+) the set of all positive integers (resp.

rational numbers) (resp. real numbers) (resp. nonnegative real numbers).

For each d ∈ N, on the set Nd, the members (1, 1, . . . , 1), (2, 2, . . . , 2),

(m1,m2, . . . ,md), (n1, n2, . . . , nd) are respectively denoted by 1, 2, m, n. Let

n = (n1, n2, . . . , nd) ∈ Nd, we set |n| =
d∏
i=1

ni, nmax = max{ni : i = 1, 2, . . . , d} and

nmin = min{ni : i = 1, 2, . . . , d}. For two real numbers m and n, we denote max{m,n}
(resp. min{m,n}) by m ∨ n (resp. m ∧ n). For each a ∈ R, the logarithm to the base

2 of a ∨ 1 will be denoted by log+ a. For m,n ∈ Nd, we write m � n (resp. m ≺ n) if

mi 6 ni (resp. mi < ni) for every i = 1, 2, ..., d.

For A,B ⊂ X, clA and coA denote the norm-closure and the closed convex hull of A,

respectively; the distance function d(·, A) of A, the Hausdorff distance dH(A,B) between

two sets A and B, the support function s(·, A) of A, the norm ‖A‖ of A are defined by
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d(x,A) = inf{‖x− y‖ : y ∈ A}, (x ∈ X),

dH(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y, A)},

s(x∗, A) = sup{〈x∗, y〉 : y ∈ A}, (x∗ ∈ X∗),

‖A‖ = sup{||x|| : x ∈ A}.

Put B∗ = {x∗ ∈ X∗ : ‖x∗‖ ≤ 1} and S∗ = {x∗ ∈ X∗ : ‖x∗‖ = 1}. Then, B∗ (resp. S∗)

is called the closed unit ball (resp. the unit sphere) of X∗.

Let P(X) be the family of all nonempty subsets of X. In P(X), one defined Minkowski

addition and scalar multiplication as follows:

A+B = {a+ b : a ∈ A, b ∈ B},

λA = {λa : a ∈ A},

where A,B ∈ P(X), λ ∈ R. P(X) is not a linear space with respect to the above addition

and multiplication, since we can not find any inverse of a set A in general.

Let Bc(X) be the σ-field on c(X) generated by the sets U− := {C ∈ c(X) : C ∩ U 6= ∅}
taken for all open subsets U of X. We call Bc(X) the Effrös σ-field.

1.1.1 Definition. A mapping F : Ω → c(X) is said to be F-measurable if for every

B ∈ Bc(X), F−1(B) ∈ F . The mapping F -measurable F is also called F-measurable

random set. If F = A then F is said for shortly to be random set.

The operations to random sets are defined as ones in P(X) for each ω ∈ Ω.

Given the random set F , we define a sub-σ-field AF of A by AF = {F−1(B) :

B ∈ Bc(X)}. Then, AF is the smallest sub-σ-field of A with respect to which F is

measurable. The distribution of F is a probability measure PF on Bc(X) defined by

PF (B) = P(F−1(B)), B ∈ Bc(X).

1.1.3 Definition. A family of random sets {Fi : i ∈ I} is said to be independent (resp.

pair independent) if AFi
, i ∈ I, are independent (resp. pair independent), and is said to

be identically distributed if all PFi
, i ∈ I, are identical.

1.1.4 Definition. A finite family of random sets {F1, F2, . . . , Fn} is said to be

exchangeable if for every permutation π of {1, 2, . . . , n} and {B1, B2, . . . , Bn} of Bc(X),

P(F1 ∈ B1, . . . , Fn ∈ Bn) = P(Fπ(1) ∈ B1, . . . , Fπ(n) ∈ Bn).

A countable family of random sets is said to be exchangeable if all its finite subsets are

exchangeable.
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1.1.5 Definition. A family of random sets {Fi : i ∈ I} is called 2-exchangeable if for

every i1, i2, j1, j2 ∈ I, i1 6= i2, j1 6= j2 and B1, B2 ∈ Bc(X),

P(Fi1 ∈ B1, Fi2 ∈ B2) = P(Fj1 ∈ B1, Fj2 ∈ B2).

The relations between the independent identically distribution (i.i.d), the pair

independent identically distribution (p.i.i.d), the exchangeability, the 2-exchangeability

and the identically distribution of random sets, are described as follows:

i.i.d //

��

p.i.i.d

��
the exchangeability // the 2-exchangeability

��
the identically distribution

For p ≥ 1, Lp(F ,X) denoted the Banach space of F -measurable random elements

f : Ω → X such that ‖ f ‖p= (E ‖ f ‖p)
1
p < ∞. If F = A then Lp(A,X) is denoted for

shortly by Lp(X). If X = R then Lp(R) is replaced by Lp.

For p ≥ 1 and for each random set F -measurable F , we set

SpF (F) = {f ∈ Lp(F ,X) : f(ω) ∈ F (ω) a.s.}

In the case F = A, SpF (A) is denoted for shortly by SpF .

1.1.8 Definition. The random set F : Ω→ c(X) is called integrable if S1F is nonempty.

In 1965, R. J. Aumann introduced the concept of the expectation of random set as

follows.

1.1.9 Definition. The expectation EF of integrable random set F is defined by

EF := {Ef : f ∈ S1F},

where Ef is the usual Bochner integral of the random element f .

Moreover, for each random set F -measurable F , we put

E(F,F) := {Ef : f ∈ S1F (F)}.

1.1.10 Definition. Suppose that {rj : j > 1} is a sequence of i.i.d random variables

and P(r1 = 1) = P(r1 = −1) = 1
2 . The Banach space X is said to be Rademacher type p
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(p ∈ [1, 2]) if there exists a constant C > 0 such that for every i > 1 and every vj ∈ X

(1 6 j 6 i),

(
E
∥∥∥ i∑
j=1

rjvj

∥∥∥p)1/p 6 C
( i∑
j=1

‖vj‖p
)1/p

.

Let {xn : n ∈ Nd} ⊂ R, we put

lim inf
nmax→∞

xn = sup
k≥1

inf
nmax≥k

xn, lim sup
nmax→∞

xn = inf
k≥1

sup
nmax≥k

xn,

lim inf
nmin→∞

xn = sup
k≥1

inf
nmin≥k

xn, lim sup
nmin→∞

xn = inf
k≥1

sup
nmin≥k

xn.

Let s (resp. w) be the strong (resp. weak) topology on X.

1.1.11 Definition.

(a) An array {xn : n ∈ Nd} ⊂ R converges to x ∈ R as nmax → ∞ if

lim inf
nmax→∞

xn = lim sup
nmax→∞

xn = x. In this case, we shall write lim
nmax→∞

xn = x, or xn → x

as nmax →∞.

(b) An array {xn : n ∈ Nd} ⊂ X converges to x ∈ X as nmax → ∞ if

lim
nmax→∞

‖xn − x‖ = 0. In this case, we write s- lim
nmax→∞

xn = x, or xn
s→ x as

nmax →∞ (for shortly, we usually remove the notation s).

(c) An array {xn : n ∈ Nd} ⊂ X weakly converges to x ∈ X as nmax → ∞ if

lim
nmax→∞

〈x∗, xn〉 = 〈x∗, x〉 for every x∗ ∈ X∗. In this case, we write w- lim
nmax→∞

xn = x, or

xn
w→ x as nmax →∞.

The convergence as nmin →∞ is stated in the similar way.

1.1.15 Definition. The array of random elements {fn : n ∈ Nd} converges in the rth

mean (r > 0) to a random element f as nmax →∞ (resp. nmin →∞) denoted by fn → f

in Lr as nmax → ∞ (resp. nmin → ∞), if E‖fn − f‖r → 0 as nmax → ∞ (resp.

nmin →∞).

1.2. Some properties of Mosco convergence and Wijsman convergence for

array of closed subsets of a Banach space

At first, we introduce some important types of convergence on the space of closed

subsets of Banach space. Let d ∈ N and let {An : n ∈ Nd} be an array in c(X). For

notational convenience, the topologies s and w on X are denoted by t. We put

t- lim inf
nmax→∞

An = {x ∈ X : x = t- lim
nmax→∞

xn, for xn ∈ An},

t- lim sup
nmax→∞

An = {x ∈ X : x = t- lim
kmax→∞

xk, for xk ∈ An(k)},
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where {An(k) : k ∈ Nd} is a sub-array of {An : n ∈ Nd} (the sub-array is subsequence

with respect to each coordinate).

It is not hard to see that t- lim inf
nmax→∞

An ⊂ t- lim sup
nmax→∞

An and s- lim inf
nmax→∞

An ⊂ w- lim sup
nmax→∞

An.

1.2.1 Definition. Let A ∈ c(X). The array {An : n ∈ Nd} ⊂ c(X) is said to be

(a) converges in the Hausdorff distance to A as nmax → ∞ and is denoted by

H- lim
nmax→∞

An = A, if lim
nmax→∞

dH(An, A) = 0;

(b) weak converges to A as nmax → ∞ and is denoted by W- lim
nmax→∞

An = A, if

lim
nmax→∞

s(x∗, An) = s(x∗, A) for every x∗ ∈ X∗;

(c) converges in the sense of Wijsman to A as nmax → ∞ and is denoted by

Wijs- lim
nmax→∞

An = A, if lim
nmax→∞

d(x,An) = d(x,A) for every x ∈ X;

(d) converges in the sense of Kuratowski to A with respect to t as nmax → ∞ and is

denoted by t- lim
nmax→∞

An = A, if t- lim sup
nmax→∞

An = t- lim inf
nmax→∞

An = A;

(e) converges in the sense of Mosco to A as nmax → ∞ and is denoted by

M- lim
nmax→∞

An = A, if

w- lim sup
nmax→∞

An = s- lim inf
nmax→∞

An = A.

The convergence as nmin →∞ is stated in the similar way.

We give the following property to prove the main results.

1.2.3 Theorem. Let {An : n ∈ Nd} ⊂ c(X). Then, if s- lim inf
nmax→∞

An 6= ∅ then

s- lim inf
nmax→∞

An ∈ c(X).

The following theorem is established to prove the “lim sup” part of Mosco convergence

of strong law of large numbers for array of random sets.

1.2.5 Theorem. Let {A,An : n ∈ Nd} ⊂ c(X) and D∗ be a countable subset of

S∗ such that x ∈ coA if and only if 〈x∗, x〉 ≤ s(x∗, A) for every x∗ ∈ D∗. Then, if

lim sup
nmax→∞

s(x∗, An) ≤ s(x∗, A) for every x∗ ∈ D∗, then

w- lim sup
nmax→∞

An ⊂ coA.

The following result is used to prove the “lim inf” part of Wijsman convergence for

multi-indexed structure.

1.2.7 Theorem. Suppose that {A,An : n ∈ Nd} ⊂ c(X) and D∗ is a countable dense

subset of B∗ such that d(x, coA) = sup
x∗∈D∗

{〈x∗, x〉 − s(x∗, coA)}, for every x ∈ X. If for
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every x∗ ∈ D∗, lim sup
nmax→∞

s(x∗, An) ≤ s(x∗, A) then for every x ∈ X

lim inf
nmax→∞

d(x,An) ≥ d(x, coA).

Studying the relation between the Wijsman convergence and the Kuratowski convergence

for the case of multi-indexed array, we obtain the following result.

1.2.8 Theorem. Let {A,An : n ∈ Nd} ⊂ c(X). If Wijs- lim
nmax→∞

An = A then

s- lim
nmax→∞

An = A.

1.3. Some properties of Mosco convergence and Wijsman convergence for

array of random sets

In Definition 1.2.1, if we replace An by Fn(ω) and replace A by F (ω) for ω in a set

with probability 1, where F , Fn, n ∈ Nd, are random sets, then we obtain the definition

of almost sure convergence for random sets.

Based on the results in Section 1.2, we obtain two following theorem of the “lim sup”

part of Wijsman convergence for the multi-indexed array of random sets.

1.3.2 Theorem. Suppose that D is a countable dense subset of X and F, Fn (n ∈ Nd)

are random sets. If for each x ∈ D, lim sup
nmax→∞

d(x, Fn(ω)) ≤ d(x, F (ω)) a.s., then

lim sup
nmax→∞

d(x, Fn(ω)) ≤ d(x, F (ω)) for every x ∈ X a.s.

1.3.3 Theorem. Let F, Fn (n ∈ Nd) be random sets. If F (ω) ⊂ s- lim inf
nmax→∞

Fn(ω) a.s.,

then

lim sup
nmax→∞

d(x, Fn(ω)) ≤ d(x, F (ω)) for every x ∈ X a.s.

The following is a property of Wijsman convergence for multi-indexed array of random

sets.

1.3.4 Theorem. Suppose that D is a countable dense subset of X and F, Fn (n ∈ Nd)

are random sets. Then, the array {Fn : n ∈ Nd} converges in the sense of Wijsman to F

a.s. as nmax →∞ if and only if for each x ∈ D,

d(x, Fn(ω))→ d(x, F (ω)) a.s. as nmax →∞.

1.4 Remark. The results in this chapter are considered to the case of convergence as

nmax →∞. For the case of convergence as nmin →∞, we obtain the similar results.
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The conclusions of Chapter 1

In this chapter, we obtain some main results:

- Give some properties of Mosco convergence and Wijsman convergence for

multi-indexed array of closed subsets of separable real Banach space.

- Establish some results of convergence for multi-indexed array of random sets with

respect to Mosco convergence and Wijsman convergence.
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CHAPTER 2

THE MULTIDIMENSIONAL
BIRKHOFF’S ERGODIC THEOREM

In this chapter, we introduce some notions relatively to the ergodic theory, establish

the multidimensional Birkhoff’s ergodic theorem in separable real Banach and obtain

two-dimensional multi-valued Birkhoff’s ergodic theorem for random sets and for fuzzy

random sets. Main results of this chapter are based on the paper [3].

2.1. Preliminaries

2.1.1 Definition. (i) A transformation T : Ω→ Ω is said to be measurable if T−1(A) ∈ A
for every A ∈ A.

(ii) A transformation T : Ω → Ω is said to be measure-preserving if T is measurable

and P(T−1(A)) = P(A) for every A ∈ A. In this case, we also say that P is T -invariant

measure.

(iii) A set A ∈ A is said to be T -invariant if T−1(A) = A.

(iv) A random variable f is said to be T -invariant if f ◦ T = f .

(v) A measure-preserving transformation T : Ω → Ω is said to be ergodic if for every

A ∈ A, the condition T−1(A) = A yields P(A) = 0 or P(A) = 1.

2.1.2 Remark. The family of all T -invariant subset of A constitute a sub-σ-field of A.

This σ-field is denoted by IT .

If T1, T2 : Ω → Ω are measure-preserving transformations then T1 ◦ T2 (which is

also written for shortly by T1T2) is a measure-preserving transformation, too. Especially,

if T : Ω → Ω is a measure-preserving transformation then Tn (n ∈ N) is a

measure-preserving transformation, too.

Next, we introduce some basic concepts of fuzzy random sets. It is an extension of

random set.

A mapping u : X→ [0, 1] is called a fuzzy set in X.

For each fuzzy set u, the α-level set Lαu (α ∈ (0, 1]) is denoted by

Lαu = {x ∈ X : u(x) ≥ α} .
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We also define Lα+u = {x ∈ X : u(x) > α} , α ∈ [0, 1).

Let F(X) denote the space of fuzzy sets u : X→ [0, 1] such that

(1) u is normal, i.e., the 1-level set L1u is nonempty,

(2) u is upper semicontinuous, that is, for each α ∈ (0, 1], the α-level set Lαu is a

closed subset of X.

In F(X), we define the following operations:

(u+ v)(x) = sup
y+z=x

min{u(y), v(z)},

(λu)(x) =

{
u(λ−1x) if λ 6= 0,
I{0}(x) if λ = 0,

where u, v ∈ F(X), λ ∈ R.

The closed convex hull cou of u ∈ F(X) is defined as follows:

cou(x) = sup {α ∈ (0, 1] : x ∈ co(Lαu)} .

2.1.3 Definition. A mapping F̃ : Ω → F(X) is said to be fuzzy random set if

{(ω, x) : x ∈ Lα(F̃ (ω))} ∈ A × BX, for every α ∈ (0, 1].

In 1991, J. Bán showed that F̃ is the fuzzy random set then LαF̃ is a random set for

every α ∈ (0, 1].

2.1.4 Definition. The expected value of fuzzy random set F̃ , denoted by EF̃ , is a fuzzy

set in X such that Lα
(
EF̃
)

= E
(
LαF̃

)
for every α ∈ (0, 1].

2.2. The multidimensional Birkhoff’s ergodic theorem for random

variables taking values in separable real Banach space

In 1951, N. Dunford established the multidimensional real-valued Birkhoff’s ergodic

theorem, where the limit function is a random variable. This result was extended by

N. Dunford, J. T. Schwartz (in 1956) and by N. A. Fava (in 1972) to the contractions.

In following, we establish the multidimensional Birkhoff’s ergodic theorem for the case

of separable real Banach space-valued random variables. This result show that the limit

function is the conditional expectation with respect to the σ-field of invariant sets.

2.2.2 Theorem. Suppose that T1, T2, . . . , Td are the commutative measure-preserving

transformations. If the random element f satisfying E
(
‖f‖

(
log+ ‖f‖

)d−1)
<∞, then

1

n1 . . . nd

n1−1∑
i1=0

· · ·
nd−1∑
id=0

f(T i11 . . . T idd )→ E(f |I) a.s. as nmin →∞
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where I =
d⋂
i=1

ITi
. Moreover, if Ts is ergodic for some s belonging to {1, 2, . . . , d}, then

E(f |I) = Ef a.s.

2.3. The multidimensional Birkhoff’s ergodic theorem for random sets

The following is the “lim inf” part of Mosco convergence of two-dimensional Birkhoff’s

ergodic theorem for random sets.

2.3.3 Proposition. Let F be a random set satisfying E(‖F‖ log+ ‖F‖) <∞ and let T1, T2

be two commutative measure-preserving transformations such that for every i ∈ {1, 2} and

every s ≥ 1, T si is ergodic. Then,

coEF ⊂ s- lim inf
m∧n→∞

1

mn
cl

m∑
i=1

n∑
j=1

F (T i1T
j
2 (ω)) a.s.

Without assuming ergodicity on the measure-preserving transformations, we have the

following theorem.

2.3.4 Theorem. Let T1, T2, . . . , Td be the commutative measure-preserving

transformations. If F is the random set satisfying E
(
‖F‖

(
log+ ‖F‖

)d−1)
< ∞, then

E(F |I) ⊂ s- lim inf
nmin→∞

1

n1 . . . nd
cl

n1−1∑
i1=0

· · ·
nd−1∑
id=0

F (T i11 . . . T idd (ω)) a.s.,

where I =
d⋂
i=1

ITi
.

The following proposition is the “lim sup” part of Mosco convergence of two-dimensional

multivalued Birkhoff’s ergodic theorem.

2.3.5 Proposition. Let F be a random set satisfying E(‖F‖ log+ ‖F‖) < ∞ and let

T1, T2 be two commutative measure-preserving transformations such that Ti is ergodic for

some i belonging to {1, 2}. Then,

w- lim sup
m∧n→∞

1

mn
cl

m∑
i=1

n∑
j=1

F (T i1T
j
2 (ω)) ⊂ coEF a.s.

The following is two-dimensional multivalued Birkhoff’s ergodic theorem with respect

to Mosco convergence and Wijsman convergence.

2.3.6 Theorem. Let F be a random set satisfying E
(
‖F‖ log+ ‖F‖

)
< ∞ and let

T1, T2 two commutative measure-preserving transformations such that T si is ergodic for

every i ∈ {1, 2} and every s ≥ 1. Then

1

mn
cl

m∑
i=1

n∑
j=1

F
(
T i1T

j
2 (ω)

)
→ coEF a.s. as m ∧ n→∞
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with respect to the topologies Mosco and Wijsman.

2.4. The two-dimensional Birkhoff’s ergodic theorem for fuzzy random sets

In this section, by using Theorem 2.3.6, we obtain the Birkhoff’s ergodic theorem for

fuzzy random sets with respect to Mosco convergence.

2.4.1 Theorem. Let T1, T2 be two commutative measure-preserving transformations such

that T si is ergodic for every i ∈ {1, 2} and for every positive integer s. If F̃ : Ω→ F(X)

is a fuzzy random set satisfying S1
L1F̃
6= ∅, E

(
‖cl(L0+F̃ )‖ log+ ‖cl(L0+F̃ )‖

)
<∞ and

Lα(coEF̃ ) = cl(Lα+(coEF̃ )) for all α ∈ [0, 1] \Q, (2.4.1)

then

M- lim
m∧n→∞

1

mn

m∑
i=1

n∑
j=1

F̃
(
T i1T

j
2 (ω)

)
= coEF̃ a.s.,

that is, there exists an N ∈ A with probability 0 such that

M- lim
m∧n→∞

Lα

(
1

mn

m∑
i=1

n∑
j=1

F̃
(
T i1T

j
2 (ω)

))
= Lα

(
coEF̃

)
for every α ∈ (0, 1] and every ω ∈ Ω \N .

The following two examples show that all conditions of Theorem 2.4.1 are satisfied.

2.4.2 Example. Let X = R and a < b (a, b ∈ R). Assume that u : R → [0, 1]

the fuzzy set in R satisfying u is an increasing function in [a, b], u(x) = 0 for every

x ∈ (−∞, a) ∪ (b,+∞) and u(b) = 1. For example,

u(x) =

{
x−a
b−a if x ∈ [a, b],
0 if x ∈ (−∞, a) ∪ (b,+∞).

The fuzzy random set F̃ : Ω → F(R) is defined by F̃ (ω) = u for every ω ∈ Ω. Then, F̃

satisfies all conditions of Theorem 2.4.1.

2.4.3 Example. Let X = R. The fuzzy set u : R→ [0, 1] is defined by

u(x) =


0 if x < 0,
2x if 0 ≤ x ≤ 1

2 ,
2(1− x) if 1

2 < x < 1,
0 if x ≥ 1.

Then, F̃ satisfies all conditions of Theorem 2.4.1, where the fuzzy random set

F̃ : Ω→ F(R) is defined by F̃ (ω) = u for every ω ∈ Ω.

The following example will show that in Theorem 2.4.1, the condition (2.4.1) does not

follow from the other conditions.
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2.4.4 Example. Let X = R. We define the fuzzy set u : R→ [0, 1] as follows:

u(x) =


0 if x < 0,
2
√

2x if 0 ≤ x ≤ 1
4 ,√

2
2 if 1

4 < x < 3
4 ,

(4− 2
√

2)x− 3 + 2
√

2 if 3
4 ≤ x ≤ 1,

0 if x > 1.

Next, the fuzzy random set F̃ is defined by F̃ (ω) = u for every ω ∈ Ω.

It is not hard to check that Lαu 6= cl(Lα+u) for α =
√
2
2 . Therefore, the condition

(2.4.1) in Theorem 2.4.1 is not satisfied. We can show that the other conditions are

satisfied. Hence, the condition (2.4.1) does not follow from the other conditions.

The conclusions of Chapter 2

In this chapter, we obtain some main results:

- Establish the multidimensional Birkhoff’s ergodic theorem for separable real Banach

space-valued random variables.

- Establish the two-dimensional Birkhoff’s ergodic theorem for random sets and for

fuzzy random sets.

- Establish the multidimensional multi-valued Birkhoff’s ergodic theorem without

assuming ergodicity on the measure-preserving transformations.

- Give some illustrative examples.
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CHAPTER 3

THE STRONG LAWS OF LARGE NUMBERS
FOR DOUBLE ARRAY OF RANDOM SETS

In this chapter, we establish some strong laws of large numbers for double array of

random sets with respect to the topologies Mosco and Wijsman. Main results of this

chapter are based on the papers [1] and [2].

3.1. Preliminaries

In the following, we give a key lemma to establish the strong law of large numbers for

double array of random sets with respect to the convergence as m ∨ n → ∞.

3.1.4 Lemma. Let {xij : i ≥ 1, j ≥ 1} be a double array of elements in a Banach space

such that

(i) for each m ≥ 1,
1

n

n∑
j=1

xmj → x as n→∞,

(ii) for each n ≥ 1,
1

m

m∑
i=1

xin → x as m→∞,

(iii)
1

mn

m∑
i=1

n∑
j=1

xij → x as m ∧ n→∞,

then
1

mn

m∑
i=1

n∑
j=1

xij → x as m ∨ n→∞.

By Lemma 3.1.4, we prove the two-indexed type of Stolz’s theorem.

3.1.5 Lemma. Let {xij : i ≥ 1, j ≥ 1} be a double array of elements in Banach space. If

lim
i∨j→∞

xij = x then

lim
m∨n→∞

1

mn

m∑
i=1

n∑
j=1

xij = x.

3.2. The strong law of large numbers for double array of random sets
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The following theorem is an extension of C. Hess’s results (in 1985 and in 1999) and

F. Hiai’s result (in 1985) from the sequence case to the double array case.

3.2.1 Theorem. If {Fij : i ≥ 1, j ≥ 1} is the double array of p.i.i.d such that S1F11
6= ∅

and E(‖F11‖ log+ ‖F11‖) <∞, then

1

mn
cl

m∑
i=1

n∑
j=1

Fij(ω)→ coEF11 a.s. as m ∨ n→∞

with respect to Mosco convergence and Wijsman convergence.

The following theorem is the strong law of large numbers for double array of

independent random sets taking closed-values of Rademacher type p Banach space. In

the sequence case, it is proved by F. Hiai in 1985.

3.2.2 Theorem. Suppose that X is a Rademacher type p Banach space (p ∈ [1, 2]). If

{Fij : i ≥ 1, j ≥ 1} is a double array of independent random sets satisfying

(a)

∞∑
i=1

∞∑
j=1

E‖Fij‖p
(ij)p

<∞,

(b) there exists an X ∈ c(X) such that

X ⊂ s- lim inf
i∨j→∞

(cl(E(Fij ,AFij
))),

lim sup
i∨j→∞

s(x∗, cl(EFij)) ≤ s(x∗, X), for every x∗ ∈ X∗,

then we obtain the strong law of large numbers with respect to Mosco convergence and

Wijsman convergence

1

mn
cl

m∑
i=1

n∑
j=1

Fij(ω)→ coX a.s. as m ∨ n→∞.

To establish the strong law of large numbers for double array 2-exchangeable random

sets, we prove some following results of multi-indexed array of 2-exchangeable random

elements.

3.2.6 Theorem. Suppose that {fn : n ∈ Nd} is an array of 2-exchangeable random

elements taking values in X. If E(‖f1‖(log+ ‖f1‖)d−1) <∞ then

1

|n|

n∑
i=1

fi → f a.s. and in L1 as nmax →∞,

for some random element f satisfying Ef = Ef1.
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Next, we obtain the following result that the limit of the average will be a constant.

3.2.7 Theorem. Assume that {fn : n ∈ Nd} is an array of 2-exchangeable random

elements in L2(X) and X∗ is separable. If Cov(〈x∗, f1〉, 〈x∗, f2〉) = 0 for every

x∗ ∈ X∗, then

1

|n|

n∑
i=1

fi → Ef1 a.s. and in L1 as nmax →∞.

The following result is an extension of Theorem 3.2.6 to double array of random sets.

3.2.8 Theorem. Assume that {Fij : i ≥ 1, j ≥ 1} is a double array of 2-exchangeable

random sets such that S1F11
6= ∅ and E(‖F11‖ log+ ‖F11‖) <∞. Let Smn =

∑m
i=1

∑n
j=1 Fij.

Then,

(a) coEF11 ⊂ cl(EF ), where F is the random set satisfying

F (ω) = s- lim inf
m∧n→∞

cl
(
Smn(ω)
mn

)
a.s.

(b) if X is reflexive and sup
m,n≥1

‖Fmn(ω)‖ <∞ a.s. then cl(EY ) ⊂ coEF11, where Y is

the random set satisfying Y (ω) = w- lim sup
m∨n→∞

cl
(
Smn(ω)
mn

)
a.s.

The conclusions of Chapter 3

In this chapter, we obtain some main results:

- Give a condition of the convergence for double array of elements in a Banach space

as m ∨ n → ∞, based on the convergence for each row and for each column and as

m ∧ n→∞.

- Establish the strong law of large numbers for multi-indexed array of 2-exchangeable

random variables taking values in separable real Banach space.

- Establish the strong laws of large numbers on Mosco convergence and Wijsman

convergence for double array of random sets with the cases: p.i.i.d, or independent and

taking closed-values of Rademacher type p Banach space, or 2-exchangeable.

- Give an illustrative example.
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CHAPTER 4

THE STRONG LAW OF LARGE NUMBERS
FOR TRIANGULAR ARRAY OF RANDOM SETS

In this chapter, we establish some strong law of large numbers for triangular array

of rowwise independent random sets taking closed-values of Rademacher type p Banach

space. We consider the types of convergence: Mosco and Wijsman. Main results of this

chapter are based on the paper [4].

4.1. Stolz’s theorem for the triangular array case

For {xni : n ≥ 1, 1 ≤ i ≤ n} ⊂ R, we put

lim inf
i→∞

xni = sup
k≥1

inf
k≤i≤n

xni,

lim sup
i→∞

xni = inf
k≥1

sup
k≤i≤n

xni.

4.1.1 Definition. (a) A triangular array {xni : n ≥ 1, 1 ≤ i ≤ n} ⊂ R converges to

x ∈ R as i→∞, denoted by lim
i→∞

xni = x, if

lim inf
i→∞

xni = lim sup
i→∞

xni = x.

(b) A triangular array {xni : n ≥ 1, 1 ≤ i ≤ n} ⊂ X converges to x ∈ X as i → ∞,

denoted by lim
i→∞

xni = x, if lim
i→∞
‖xni − x‖ = 0.

The following lemma is Stolz’s theorem for the triangular array case.

4.1.3 Lemma. Let {xni : n ≥ 1, 1 ≤ i ≤ n} be a triangular array of elements in a

Banach space satisfying

(a) lim
i→∞

xni = x,

(b) there exists a constant C > 0 such that ‖xni‖ ≤ C, for every n ≥ 1, 1 ≤ i ≤ n.

Then
1

n

n∑
i=1

xni → x as n→∞.
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In this section, we also give an example that Lemma 4.1.3 without condition (b) is not

true.

4.2. The strong law of large numbers for triangular array of random sets

The family of random sets {Fi : i ∈ I} is called bounded expectation if there exists a

positive constant C such that ‖EFi‖ ≤ C for every i ∈ I.

The following theorem is as similarly as F. Hiai’s result (in 1985) for triangular array

case.

4.2.1 Theorem. Suppose that X is a Rademacher type p Banach space (p ∈ (1, 2]) and

{Fni : n ≥ 1, 1 ≤ i ≤ n} is a triangular array of rowwise independent, bounded expectation

random sets. Let Ψ(t) : R→ R be a positive, even, convex, continuous function such that

Ψ(|t|)
|t|r

↑ and
Ψ(|t|)
|t|r+p−1

↓ as |t| ↑ (4.2.1)

for some nonnegative integer r and there exists a positive constant C1 satisfying

Ψ(a+ b) ≤ C1(Ψ(a) + Ψ(b)) for every a, b ∈ R. (4.2.2)

If the following conditions are satisfied

+)

∞∑
n=1

n∑
i=1

E(Ψ(‖Fni‖))
Ψ(n)

<∞, (4.2.3)

+)

∞∑
n=1

(
n∑
i=1

E‖Fni‖p
np

)p.k

<∞, (4.2.4)

for some positive integer k and there exists an X ∈ c(X) such that

+) X ⊂ s- lim inf
i→∞

cl(E(Fni,AFni
)),

+) lim sup
i→∞

s(x∗, cl(EFni)) ≤ s(x∗, X), for every x∗ ∈ X∗

then we obtain the strong law of large numbers

1

n
cl

n∑
i=1

Fni(ω)→ coX a.s. as n→∞

with respect to Mosco convergence and Wijsman convergence.

4.2.2 Remark. In Theorem 4.2.1, if the condition (4.2.1) is satisfied for r = 0 or r = 1

then we can remove the condition (4.2.4).

We also give an example that the condition “bounded expectation” in Theorem 4.2.1

does not follow from the other conditions.
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The following theorem is an extension of the result of A. Bozorgnia, R. F. Patterson

and R. L. Taylor (in 1997) for random sets.

4.2.3 Theorem. Assume that {Fni : n ≥ 1, 1 ≤ i ≤ n} is a triangular array of rowwise

independent random sets taking closed-values of Rademacher type p Banach space

(p ∈ (1, 2]). Let {an : n ≥ 1} be a increasing sequence of positive real numbers such

that lim
n→∞

an = +∞ and let Ψ(t) be a positive, even, continuous function such that

Ψ(|t|)
|t|r

↑ and
Ψ(|t|)
|t|r+p−1

↓ as |t| ↑ (4.2.23)

for some nonnegative integer r. If

+) 0 ∈ E(Fni,AFni
), (4.2.24)

+)

∞∑
n=1

n∑
i=1

E(Ψ(‖Fni‖))
Ψ(an)

<∞, (4.2.25)

+)

∞∑
n=1

(
n∑
i=1

E‖Fni‖p
apn

)p.k

<∞, (4.2.26)

for some positive integer k, then

0 ∈ s- lim inf
n→∞

1

an
cl

n∑
i=1

Fni(ω) a.s.

4.2.4 Remark. In Theorem 4.2.3, if the condition (4.2.23) is satisfied for r = 1 then we

can remove the condition (4.2.26), and if the condition (4.2.23) is satisfied for r = 0 then

we can remove the conditions (4.2.24), (4.2.26).

We also give an example that the conclusion of Theorem 4.2.3 cannot be replaced by

by the stronger one

M- lim
1

an
cl

n∑
i=1

Fni(ω) = {0} a.s.

The conclusions of Chapter 4

In this chapter, we obtain some main results:

- Establish Stolz’s theorem for the triangular array case.

- Establish the strong law of large numbers for triangular array of rowwise independent

random sets taking closed-values of Rademacher type p Banach space with respect to

Mosco convergence and Wijsman convergence.

- Give some illustrative examples.
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GENERAL CONCLUSIONS AND SUGGESTIONS

1. General conclusions

In this thesis, we obtain some main results:

- Establish some results of convergence for multi-indexed array of closed subsets of a

Banach space, and for multi-indices array of random sets.

- Establish the multidimensional Birkhoff’s ergodic theorem for separable real Banach

space-valued random variables.

- Establish the two-dimensional multi-valued Birkhoff’s ergodic theorem with respect

to Mosco convergence and Wijsman convergence.

- Establish the strong law of large numbers for multi-indexed array of 2-exchangeable

random elements.

- Establish the strong laws of large numbers on Mosco convergence and Wijsman

convergence for double array of random sets with the cases: p.i.i.d, or independent and

taking closed-values of Rademacher type p Banach space, or 2-exchangeable.

- Establish the strong law of large numbers for triangular array of rowwise independent

random sets taking closed-values of Rademacher type p Banach space with respect to

Mosco convergence and Wijsman convergence.

2. Recommendations

In the near future we will study the following issues:

- The weak law of large numbers on Mosco convergence and Wijsman convergence for

sequence and for array of random sets.

- The multi-valued ergodic theorems with respect to the topologies: Mosco, Wijsman,

Slice, Hausdorff, etc. for the one-dimensional case and for the multi-dimensional case.
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